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Abstract 

The no-three-in-line problem is one of unsolved problems in number theorem. The goal 
of the no-three-in-line problem is to locate 2N points on an N X N squares array where no 
three points are in line. The proposed algorithm uses N* hysteresis McCulloch-Pitts 
neurons as the processing elements for the N X N array problem. Our neural network 
algorithm has discovered several different solutions for up to N = 25. 
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1. Introduction 

The no-three-in-line problem is one of unsolved problems in number theorem 
and originally presented by H.E. Dudeney in 1906 [l]. The goal of the problem is 
to locate 2N points on an N x N squares array with no three points in line. Note 
that the ‘line’ means not only any vertical/horizontal/diagonal line but also any 
straight line. Because of the characteristics of the problem, we must locate two and 
only two points per row and per column. Fig. 1 shows that four black squares 
(locations of the points) in the 7 x 7 array problem form six lines where we cannot 
locate any point on the shaded squares. 
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Fig. 1. Definition of the line. 

The no-three-in-line problem has been studied by many mathematicians. Guy 
and Kelly have presented a probabilistic argument supporting the conjecture that 
for large N, the maximum number of points or M(N) is less than cN, where 
c = (2,rr2/3>“3 = 1.87 [2]. Hall et al. have shown that, given E > 0, M(N) 2 (3/2 - 
E)N for all sufficiently large N [3]. The maximum number of N satisfying 
M(N) = 2N is still unknown [4]. Only the examples have proved M(N) = 2N for 
N _< 20 [5-71. Many of the solutions, especially for bigger N, were solved by a 
computer search [Sl. In a recent paper [9], the computer search proved A4( N > = 2 N 
for N I 32 where the configuration having r/2 rotational symmetry or reflection 
symmetry in two main diagonals was mainly used to reduce the searching space. 

Hopfield and Tank proposed the first neural network approach to optimization 
problems [lo]. They applied the sigmoid neural network to the traveling salesman 
problem. Szu used the McCulloch-Pitts neural network for the same problem [ill. 
To suppress the oscillatory behavior, the hysteresis neuron model has been 
introduced [12]. In this paper, the hysteresis McCulloch-Pitts neural network was 
used for the no-three-in-line problem. 

2. Neural representation 

The hysteresis McCulloch-Pitts neuron model is shown in Fig. 2 and the 
input/output function of the i, jth hysteresis neuron is given by: 

I/i,j = 1 if U,,j > UTP (Upper Trip Point) 

= 0 if q.,j < LTP (Lower Trip Point) 

unchanged otherwise (1) 

where K,j and Ui,j are the output and the input of the i, jth neuron respectively, 
and UTP is always larger than LTP. 
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Fig. 2. Hysteresis McCulloch-Pitts input/output function. 

The synaptic links between the i, jth neuron and other neurons are determined 
by the motion equation. The motion equation of the i, jth neuron is given by: 

-= 
dt aF,j 

where E is the computational energy function. Convergence theorems/proofs of 
the artificial neural network is shown in [13]. The motion equation in Eq. (2) can 
be constructed by considering the necessary and sufficient constraints and/or the 
cost function from the given problem because the condition of the constraints or 
the violations gives the interconnections of the artificial neural network. 

An N X N neural array is prepared for the no-three-in-line problem. The 
output state of the i, jth neuron gives the location of a point in the ith row and the 
jth column. In other words, y,j = 1 means that the point in the ith row and the jth 
column should be located. K,i = 0 means that no point is located in the ith row 
and the jth column. In order to locate four black squares (points) in Fig. 1, 
V,,z = V,,6 = & = V,,6 = 1 must be satisfied. 

It is well understood that two and only two points must be located per row and 
per column so as to locate 2N points on an N X N squares array with no-three-in- 
line. The motion equation of the i, jth neuron for the no-three-in-line problem is 
given by: 

-Bd CCC K-nk,j-mk 
Isi-nk,j-mk_tN 

k,m,n #O 

-Bd ccc %nk,j+mk 
\l<i-nk,j+mksN 

k,m,nzO 

for i, j= l,...,N (3) 
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where d(x) =x - 1 if x 2 2, and 0 otherwise. Note that A and B are parameters 
and that m and II should not be a multiple of the same prime number except 1. In 
Eq. (3) the first term gives the row (horizontal) constraint such that two and only 
two points/neurons should be located/fired in the ith row. The second term 
describes the column (vertical) constraint such that two and only two points/neu- 
rons should be located/fired in the jth column. If there is only one neuron fired in 
the ith row/jth column, the neurons in the ith row/jth column must be encour- 
aged to fire. The third and the fourth terms represent all directional constraints 
except horizontal and vertical ones such that no three points should be in the same 
line. When m = n = 1, the third and the fourth term represent diagonal con- 
straints. 

In order to accelerate the calculation and escape from the local minimum [14], 
the following equation was used instead of Eq. (3): 

If (t mod 10) < 7 then 

-Bd ccc Vi-nk,j-mk K,j 
lsi-nk,j-mksN ) 

k,m,n#O 

-Bd ccc y/i-nk,j+mk v,j 
lsi-nk,j+mk<N ) 

k,m,n#O 

else 

2= -A(&&-2) -k$$‘$j-2) 

-Bd ccc I/i-nk,j-mk 
lsi-nk,j-mk%N ) 

k,m,n#O 

-Bd ( ccc r-nk,j+nzk\ 
\l<i-nk,j+mksN I 

k,m,n#O 

for i, j=l,...,N (4) 
where t is the number of iteration steps. The third and the fourth terms in the first 
equation are activated only when the i, jth neuron generates nonzero output. In 
the local minimum, no neurons/points are fired/located on the ith row or the jth 
column. or onlv the limited neurons/points are fired/located. In order to increase 
the global minimum convergence, the following two terms were also added 
(4) D31: 

where h(x) is 1 if x < 2, and 0 otherwise. Note that C is a parameter. 

to Eq. 

(5) 
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3. Neural network algorithm 

Each neuron’s output is updated by the motion equation. In order to numeri- 
cally solve the motion equation, the first order Euler method was used. The 
following procedure describes the proposed algorithm. 
0. Set 1= 0, A = B = C = 1, UTP = 1, LTP = - 1, and the range for Q,j, Kmax 

= 5 and U_min = - 10. 
1. Assign randomly and uniformly generated numbers between 0 and U_min to 

the initial values of q,j(t) for i, j = 1,. . . , N. 
2. Set y:,(t)=Ofor i, j=l,..., N. 
3. Iterate the following four steps sequentially for i, j = 1,. . . , N: 
3.1. Compute Eq. (4) and (5) to obtain At!.Jj(t): 

(6) 

A solution for N=19 

A solution for N=23 

A solution for N=21 

A solution for N=25 

Fig. 3. Different solutions for the no-three-in-line problem. 
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3.2. Update Ui,j(t + 1) based on the first-order Euler method: 

Y,j( t + 1) = q,j( t) + AU,,j( t) (7) 

3.3. If Ui,j(t + 1) > U_max then Q,j(f + 1) = U_max and if q,j(t + 1) < U_min 
then I/;:,j(t + 1) = U_min. 

3.4. Update K,j(t + 1) by Eq. (1). 
4. If K,j(t) = 1 and Aq,j(t) = 0 for i, j = 1,. . . , N or t = t-limit, then terminate 

this procedure. 
5. Increment t by 1 and go to step 3. 
The termination condition in step 4 implies that the required constraints are all 
satisfied. 

4. Results 

The proposed algorithm was implemented on a Macintosh PowerBook 170 and 
a DEC 3100 computer. Generally the neural network program running on a 
sequential machine requires 0(N2) time for solving the no-three-in-line problem 
and nearly O(1) time on a parallel machine using N2 processing elements. 

Our simulator has found several solutions for up to N = 25 so far. Fig. 3 shows 
solutions for N = 19, 21, 23, and 25. Note that one and only one solution has been 
shown for N = 23 and only two solutions for N = 25 have been found, and that all 
of those configurations have reflection symmetry in two main diagonals [9]. It took 
about 10 minutes to obtain the solution on N = 25 in the DEC machine. 

5. Conclusion 

We have shown several solutions of the no-three-in-line problem, an unsolved 
problem in number theorem. Our neural network algorithm uses an N X N neural 
array for the N x N array problem. The simulation results of our algorithm show 
that our approach is promising for finding the solutions for the larger scale 
problems. 
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