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Abstract 

Funabiki, N. and Y. Takefuji, A parallel algorithm for solving the 'Hip' games, Neurocomputing 3 (1991) 97-106 

A parallel algorithm for solving the 'Hip' games based on an artificial neural network model is presented in this paper. The 
game of 'Hip' is named because of the hipster's reputed disdain for 'squares'. The rule of the game is to place the counters 
on a checkerboard so that four of them do not mark the corners of a square. The square may be of any size and be tipped 
at any angle. Normally this game is played by two players, where the game on a six-by-six checkerboard is the maximum 
size for the solution. The solution means that every player can place all the counters on the checkerboard without 
violations. In other words, the goal of our algorithm is to find the pattern of a draw game between players where they 
should not mark the corners of a square. In order to enlarge the size of the checkerboard where a solution exists, we 
modified the game as n/2 players play on an n-by-n checkerboard where n is an even number. The proposed parallel 
algorithm requires m x n 2 processing elements for the m-player-n-by-n-checkerboard game to find the solution of the 'Hip' 
games. The algorithm is verified by solving six games where the size of the checkerboard is varied from 4 to 12. 

Keywords. Parallel algorithm; artificial neural network; modified McCulloch-Pitts neuron model; Hip game: draw game 
pattern. 

I. Introduction 

Martin Gardner introduced the game of 'Hip' 
where each player should place the counters on a 
checkerboard so that any four of them do not 
mark the corners of a square [1]. The square 
may be of any size and be tipped at any angle. 
Figure I shows four of the squares on a six-by-six 
checkerboard where there are 105 possible 
squares. The number of different squares on an 
n-by-n checkerboard is given by (nn-n2)/12 
[2]. If a player makes a square, he loses the 
game. The goal of our algorithm is to find the 
solution of this game. The solution means that 
each player can place all the counters on a 
checkerboard without making a square. In other 

* Funabiki is also with the system engineering division, 
Sumitomo Metal Industries, Ltd., Ibaraki, Japan 314. 

0925-2312/91/$03.50 © 1991- Elsevier Science Publishers B.V. 

Fig. 1 Four of the 105 squares on 6-by-6 checkerboard. 
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words, the goal of our algorithm is to find the 
pattern of a draw game between players where 
they should not mark the corners of a square. 
Normally this game is played by two players, but 
in this case it was proved by R.I. Jewett in 1960 
that the game on a six-by-six checkerboard is the 
maximum size where a solution exists. Therefore 
we modified the game so that larger than six-by- 
six checkerboards have a solution. The modified 
game is that n/2 players play on an n-by-n 
checkerboard where n is an even number. We 
propose a parallel algorithm which generates 
solutions in the conventional two-player games 
and in the modified games. 

The first solution or the draw game pattern for 
the two-player-six-by-six-checkerboard game was 
discovered by C.M. McLaury. Then D.H. Tem- 
pleton proposed a simple symmetry strategy for 
the second player to win this game or to find the 
draw game pattern. The strategy is that the 
second player should place his counter on the 
cell which is rotated by 90 degrees around the 
center of the checkerboard from the cell on 
which his opponent placed his last counter. In 
1963 W.W. Massie devised an algorithm for the 
solution of the 'Hip' game by using this strategy. 
In the algorithm he used a random number to 
choose the cell on which the first player should 
place his counter. Therefore the algorithm does 
not guarantee to find the solution. No parallel 
algorithm has been reported in the last three 
decades. 

In this paper we propose a parallel algorithm 
to find the solutions in the 'Hip' games which is 
based on an artificial neural network model. The 
artificial neural network model uses a large num- 
ber of simple processing elements which are 
called neurons because they perform the func- 
tion of the simplified biological neurons. The 
artificial neural network model for solving com- 
binatorial optimization problems was first intro- 
duced by Hopfield and Tank [3]. The artificial 
neural network model has been successfully ap- 
plied for several NP-complete and optimization 
problems [4-14]. 

The output Vqk of the ijkth processing element 
based on the modified McCuUoch-Pitts neuron 
model [15] follows: 

Vqk = 1 if Uq~ > 0 and Uok 

f o r r = l  . . . . .  m 

= max{Uijr} 

= 0 otherwise, (1) 

where Uqk is the input of the ijkth processing 
element and m is the number of players. The 
change of the input Uqk is given by the partial 
derivatives of the computational energy E with 
respect to the output Vq~. E is an n2× m-vari- 
able function: E(VIll, V I I 2 ,  . . .  , Vnnm) where n is 
the size of the checkerboards. The equation is 
called a motion equation or a Newton equation. 
It is given by: 

dUqk OE(V111 , Vii2 , . . . ,  Vnnm) 

dt OVq, 
(2) 

In whatever form the computational energy func- 
tion E is given, the motion equation forces it to 
monotonically decrease. The following proof 
shows that the motion equation forces the state 
of the system to converge to the local minimum 
[81. 

Proof. Consider the derivatives of the computa- 
tional energy function E with respect to time t. 

dVqk dE 

d Vq k d Uqk ] 

where the motion equation replaces (OE/cqVijk) 
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by 

d Uij k 
- - - d T - / '  

dE ~ dUi/k dVijk '}~ dVijk ) 
d t  - ~'i ~-'~k \ -~ dUij~/\--~/ 

• (dV, 
(3) 

As long as the input /output  function of the 
processing elements obeys the nondecreasing 
function, dVqk/dUqk must be positive or zero so 
that dE/dt is negative or zero. Therefore  the 
state of the system is always guaranteed to con- 
verge to the local minimum. [] 

We verified our parallel algorithm through sol- 
ving the six problems where the size of the 

checkerboard is varied from 4 to 12. The simula- 
tion results are also shown and discussed in this 
paper. 

2. System representation 

Figure 2 shows the system representation to 
find the solutions in the 'Hip'  game by four 
players on a four-by-four checkerboard. Four 
processing elements are used to describe which 
player should occupy one cell on the checker- 
board in this game. Generally m processing ele- 
ments are used to represent m players for one 
cell on the checkerboard.  The total number of 
required processing elements is m x n 2 for the 
m-player-n-by-n-checkerboard game. One and 
only one processing element among m processing 
elements for one cell should have nonzero out- 

Cell Coordinates j ~, 1 2 3 4 

" i e/  / /  /" / /  / ([[D O 0 C) 1PlaP~r#12 
Players 

= Player 
(k=2) 

Output of Processing Elements 

Cell (I I) (I 
:Coordinates ' 

k=l 

k=2 

k=3 

k=4 

,2) (1,3) . . . . . . .  (4,4) x~/ 

I 0 0 I 0 0 0  

0 1 1 0 

0 0 0 0 

0 0 0 0 

Fig. 2. System representation for the 'Hip' game. 
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put to choose a player from m players to occupy 
the cell on the checkerboard. The nonzero out- 
put means that the corresponding player to the 
processing element should place his counter on 
the cell. Figure 2 shows that the cells (1, 1) and 
(4,4) are occupied by the player #1, and the 
cells (1, 2) and (1, 3) are occupied by the player 
#2. 

Figure 3 shows the general form of the viola- 
tion conditions for this game. The four cells 
corresponding to the four coordinates mark the 
corners of a square. The kth player processing 
element of the cell (i, j )  should not have non- 
zero output if the kth player processing elements 
of the other three cells, (i + p, j + q), (i - q, 
j + p ) ,  and (i + p  - q, j + p  + q), have nonzero 
output simultaneously. Therefore the violation 
conditions are given by the following concise 
function: 

( i-q, j+p ) 

(i,j) 

q, j+P+q ) 

( i+p, j+q ) 

( p , q ) # ( 0 , 0 )  
1 _< i + p ,  j+q -< n 
1 _<i-q, j+p<_n 

1 -< i+p-q, j+p+q < n 

Fig. 3. Violation conditions for the 'Hip' game. 

2 2  
P,q 

( p , q ) ~ ( 0 , 0 )  
l~i+p,j+q~n 
l~i-q,j+p<~n 

l<~i+p-q,j+p+q<-n 

E+p j+q kVi-q j+p kE+p-q j+p+q k 

This function is nonzero if the kth player 
occupies the three corners of a square. 

The motion equation of the kth player 
processing element of the cell (i, j )  for the 
m-player-n-by-n-checkerboard game is given by: 

(4) 

The first term (A-term) in Eq. (5) forces one and 
only one processing element to have nonzero 
output for the cell (i, j)  on the n-by-n checker- 
board. The second term (B-term) performs the 
inhibitory force. The B-term discourages the 

d Uij k 

dt 
A 1) 

r = l  E jr - -  

- 8  E 2  
P,q 

( p , q ) ¢ ( O , O )  
l~i+p,j+q<<.<n 
l <<.i-q,j +p<<.n 

l<<.i+p-q,j+p+q<~n 

- C g  - 

- q = l  

+ Dh 2 Ejr 
r = l  

E+p j+q k E'-q j+p k E+p-q  j+p+q k 

(5) 
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i jkth processing e lement  to have nonzero output 
if the kth player occupies the other  three cells of 
a square. The third te rm (C-term) adjusts the 
number  of the counters which kth player places 
on the checkerboard  so that each player should 
place the same number  of counters on the chec- 
kerboard.  In this equat ion each player should 
place n2/m counters on the checkerboard.  The 
function g(x) is x if Ix[ ~< 3, 3 if x > 3, - 3  other- 
wise. The  last term (D-term) provides the hill- 
climbing which allows the state of the system to 
escape f rom the local minimum and to converge 
to the global minimum - the solutions. The func- 
tion h(x) is 1 if x = 0, 0 otherwise. A, B, C, and 
D are constant coefficients. 

The symmetry  strategy which was given by 
Temple ton  is useful to obtain a solution. The 
strategy can be said that all the counters should 
be placed symmetrically around the center of the 
checkerboard.  Therefore  we always make the 
values of the processing elements  symmetric 
around the center of the checkerboard  by using 
the following procedure:  

U,+l_~ ,+l_ jk=Ui j  k f o r / = 1  . . . . .  n/2,  

j = l  . . . . .  n, and k = l , . . . , m .  (6) 

3. Parallel algorithm for the 'Hip' game 

The following procedure  describes the pro- 
posed algorithm based on the first order  Euler  
method for the m-player-n-by-n-checkerboard 
game. It decides which player should place his 
counter  on the cell of the checkerboard without 
making a square by his counters. 
0. Set t = 0 ,  A = B = C = I ,  D = 5 ,  U _ m a x = 2 0 ,  

and U_min = - 2 0 .  
1. The initial values of U~jk(t ) for i = 1 . . . . .  j = 

1 . . . . .  n, and k = 1 . . . . .  m are randomized 
between 0 and U_min. 

2. Evaluate  values of Vij~(t ) for i =  1 . . . . .  n, 
j = 1 . . . . .  n, and k = 1 . . . . .  m based on the 
conditional binary function. 

~jk(t)  = 1 if Uii~(t ) > 0 and Uijk(t ) 

= max{ Uijr(t)} for r = 1 . . . . .  m 

= 0 otherwise .  (7) 

3. Use the motion equation in Eq. (5) to com- 
pute AUijk(t) for i = 1 . . . . .  n, j = 1 . . . . .  n, 
and k = 1 . . . . .  m. If ( t m o d  10) < 2  then 

(m ) 
- A r~=, Vijr(t ) AUijk(t ) = - 1 

- B  E E  
P,q 

(p,q)~(0,0) 
l<-i+p,j+q<~n 
l < - i - q . j + p ~ n  

I<~i+p-q,]+p+q<~n 

- 

p = |  q=l 

(m ) + Dh ~ V~j~(t) 
r=| 

Vi+p i+q k(t)V,-q i+e k(t)Vi+p-q i+p+q k(t) × 3 

× 3  

else 

(s) 
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(m ) 
- A  r~=l Vilr(t) A Uq~ (t) = - 1 

- B  E E  
P,q 

(p,q)~(O,O) 
l<-i+p,j+q<~n 
l<-i-q,j+p<.n 

l~i+p-q,j+p+q<~n 

- o=,  

+ r t  . 
r= l  

K" +p j+q k( t )Vi -q  j+p k(t)Vi+p-q j+p+q k(t)  

(9) 

4. Compute Uij k ( t + l )  for i = l  . . . .  , n ,  j =  
1 , . . . ,  n, and k = 1 , . . . ,  m based on the first 
order Euler method. 

Uqk(t + 1) = Uqk(t ) + A Uijk(t ) . (10) 

5. If Ui jk ( t+ l )>U max then Uiik(t+l)= 
U m a x  for 

i = l , . . . , n , j = l  . . . . .  n, and 

k = l , . . . , m .  (11) 

If Uij~( t+l )<U min then Uijk(t+l)= 
U_min for 

i = l , . . . , n , j = l  . . . . .  n, and 

k = 1 . . . .  , m .  (12) 

6. Use the symmetry strategy in Eq. (6). 

U,+l_i,+~_jk(t ) = Uq,(t) for i = 1 , . . . ,  n/2, 

j = l , . . . , n ,  a n d k = l , . . . , m .  (13) 

7. If all conflicts are resolved then terminate this 
procedure else increment t by 1 and goto step 
2. 

The modified motion equations in step 3 em- 
pirically improve the convergence frequency to 
the global minimum [5]. 

The simulator based on the proposed proce- 
dure has been developed on a Macintosh SE/30 
in order to verify our algorithm. The following 
six games were simulated: 

(i) Game #1: two-player game on a four-by- 
four checkerboard. 

(ii) Game #2: two-player game on a six-by-six 
checkerboard. 

(iii) Game #3: three-player game on a six-by-six 
checkerboard. 

(iv) Game #4: four-player game on an eight-by- 
eight checkerboard. 

(v) Game #5: five-player game on a ten-by-ten 
checkerboard. 

(vi) Game #6: six-player game on a twelve-by- 
twelve checkerboard. 

Figures 4 -9  show two of the solutions or the 
draw game patterns for the respective games 
which our simulator found. Our simulator found 
several solutions in the same games from the 
different initial values of Uijk(t). Table I shows 
the frequency of the convergence to solutions 
and the average numbers of iteration steps where 
100 simulation runs were performed for each one 
of the six games. Figure 10 shows the relation- 
ship between the frequency and the number of 
iteration steps to converge to the solutions in 
Game #3 and Game #4. 
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Fig. 8. Simulation results for game #5. 
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Fig. 9. Simulation results for game #6. 

Table 1 
Summary of simulation results. 

Game no, 

Average 
iteration steps to 

solutions 

Convergence 
frequency to 

solutions 

Game #1 25.6 85% 
Game #2 85.2 27% 
Game #3 65.8 87% 
Game #4 128.7 75% 
Game #5 147.5 30% 
Game #6 234.1 10% 

4. Conclusion 

This paper proposed the parallel algorithm for 
solving both the normal 'Hip'  games and the 
modified 'Hip '  games. It uses m × n 2 processing 
elements for the m - p l a y e r - n - b y - n  checkerboard 
games. Based on the algorithm the frequency 
that the state of the system converged to a 
solution was 10% or more and the average num- 
bers of iteration steps were in a range of 25.6 to 
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Fig. 10. The relationship between the frequency and the number of iteration steps to converge to the solutions in games #3 and 
#4. 

234.1 in our  simulation. With a slight modifica- 
tion the proposed algorithm can be used for 
finding Ramsey graphs which have been exten- 
sively studied by mathematicians [16, 17]. The 
algorithm for the Ramsey graphs is under inves- 
tigation. 
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