
Healthcare Analytics 1 (2021) 100005

S
a
Y
F

A

K
C
S
P
P
M
O

1

p
s
t
P
a
p
p

i
l
l
t
s
d
t
T
o
e

1

w
a

h
R
A
2
(

Contents lists available at ScienceDirect

Healthcare Analytics

journal homepage: www.elsevier.com/locate/health

CORECOVID: A Python Package Index for scoring the individual policies
gainst COVID-19
oshiyasu Takefuji
aculty of Data Science, Musashino University, 3-3-3 Ariake Koto-ku, Tokyo 135-8181, Japan

R T I C L E I N F O

eywords:
OVID-19
coring policy
ython Package Index (PyPI)
andemic
itigation
pen-source software

A B S T R A C T

This study proposes SCORECOVID, a new Python Package Index (PyPI) for scoring individual policies against
covid-19 and mitigating the pandemic. The new PyPI package consists of two modules. The first module
automatically scrapes the latest information on the number of deaths and population by COVID-19 to score
individual policies for a given country. The second module calculates the score by dividing the number of
deaths by the population in millions. The Federal Communications Commission (FCC) in the US estimates
the economic value of a statistical life to be $9.5 million per individual. The higher the number of deaths,
the greater the economic loss. To use the best policies to reduce the number of deaths, we should adopt
measures and methods from exceptional countries with high scores. The proposed method reveals two groups:
a high-scored group and a low-scored group. The number of deaths is an indicator of economic and health
policy scores. SCORECOVID is the world’s first open-source policy scoring tool for COVID-19. It is designed to
help many countries utilize state-of-the-art analytics methods to effectively mitigate the COVID-19 pandemic.
. Introduction

With the rapid advancement of open-source software, open-source
rograms are dominating many applications such as file servers, mail
ervers, web servers, and artificial intelligence frameworks. In order
o use open-source programs, it is essential to use a package manager.
ackaging plays an important role in making open-source libraries
ccessible to users. Therefore, this paper briefly introduces open-source
ackaging that many researchers use around the world. The following
ackaging managers will be introduced: npm, Maven, and Go.

The popularity of a programming language can be measured by two
ndicators. Two indicators show that the Python is the most popular
anguage. The first goal of this paper shows how to package a Python
ibrary in public with PyPI. The second goal is to show advantages of
he proposed algorithm over the existing algorithms on health policy
coring. In scoring health policies on COVID-19, the number of deaths
ue to COVID1-19 per population in millions is used in this paper while
he existing algorithms use the number of infected cases with a dataset.
his paper addresses what was missing in the existing scoring schemes
r algorithms and shows advantages of the proposed algorithm over the
xisting algorithms.

.1. Open-source packaging and language popularity

There are many package managers for installing open-source soft-
are codes [1]. The largest package manager in the world is npm man-
ging 1.85M packages. npm is a package manager for the JavaScript

E-mail address: takefuji@keio.jp.

programming language. npm, npm is the default package manager for
the JavaScript runtime environment Node.js.

The second largest package manager is Maven managing 418K
packages [2]. Maven is a build automation tool used primarily for Java
projects. Maven can also be used to build and manage projects written
in C#, Ruby, Scala, and other languages. The Maven project is hosted
by the Apache Software Foundation.

The third package manager is Go managing 382K packages [3].
Go is a statically typed, compiled programming language designed
at Google. Go is syntactically similar to C, but with memory safety,
garbage collection, structural typing, and CSP-style concurrency.

Many developers are always wondering what is the best program-
ming language to develop their products in terms of cost, reusability,
development time, security, durability, maintenance, future prospects,
and many other factors. Determining which programming language is
the ‘‘most widely used’’ is difficult because its meaning varies from
context to context. Therefore, two indicators are often used to measure
the popularity of a programming language: PYPL [4] and TIOBE [5].

The PYPL (PopularitY of Programming Language) index is an in-
dicator based on Google Trends, reflecting the developers’ searches
for ‘‘<programming language> tutorial’’, instead of what pages are
available

According to Wikipedia, the TIOBE programming community index
is a measure of popularity of programming languages, created and
maintained by the TIOBE Software.

The latest PYPL index as of September 2021 is as follows:
ttps://doi.org/10.1016/j.health.2021.100005
eceived 15 August 2021; Received in revised form 18 September 2021; Accepted
vailable online xxxx
772-4425/© 2021 The Author(s). Published by Elsevier Inc. This is an open acces
http://creativecommons.org/licenses/by/4.0/).
18 September 2021

s article under the CC BY license

https://doi.org/10.1016/j.health.2021.100005
http://www.elsevier.com/locate/health
http://www.elsevier.com/locate/health
http://crossmark.crossref.org/dialog/?doi=10.1016/j.health.2021.100005&domain=pdf
mailto:takefuji@keio.jp
https://doi.org/10.1016/j.health.2021.100005
http://creativecommons.org/licenses/by/4.0/


Y. Takefuji Healthcare Analytics 1 (2021) 100005
Rank Language Share Trend
1 Python 29.48% −2.4%
2 Java 17.18% +0.7%
3 JavaScript 9.14% +0.8%

The TIOBE index as of September 2021 is as follows,

Sept. 2021 Programming
Language

Ratings Change

1 C 11.83% −4.12%

2 Python 11.67% +1.20%

3 Java 11.12% −2.37%

The de-facto standard package artificial intelligence manager is the
fourth largest package manager in the world, PyPI managing 370K
packages [6]. PyPI is a Python language package manager. Python is a
language of the first ranked by PYPL index and the second ranked by
TIOBE index as of June 2021. The proposed algorithm uses a Python
language with the PyPI packaging manager.

1.2. Advantages of the proposed algorithm

This paper shows how to package a new PyPI library or an ex-
ecutable application using several open-source libraries. Introduced
scorecovid is an example of the new PyPI package for scoring individual
policies against COVID-19 [7].

Scoring the performance of individual policies is calculated by
dividing the number of deaths due to the covid-19 by the population in
millions [8]. The conventional algorithms use the number of infected
cases [9–11]. The economic value of a statistical life (VSL) varies
from country to country, but the FCC estimates it at $9.5 million
per person [12]. In Japan, the VSL is from 217 million yen to 264
million [13].

The existing algorithms based on dataset analysis for scoring indi-
vidual policies can only indicate the spread of COVID-19 with infected
cases but they cannot indicate the effectiveness of the policies. A
dataset is composed of instances with necessary parameters. The fatal
drawback of the existing algorithms lies in that if the necessary pa-
rameters are lacking an important feature or a parameter, they cannot
measure policy performance. The existing algorithms do not have a way
to measure how well policies are implemented or enforced, nor do they
measure the degree of compliance with official policies [9].

The Oxford Covid-19 Government Response Tracker (OxCGRT) col-
lects systematic information on policy measures that governments have
taken to tackle COVID-19 [9]. Although OxCGRT covers more than 180
countries and are coded into 23 indicators or features, it lacks a key
indicator, ‘‘digital fences’’ [8]. In data science analysis, if a dataset lacks
important indicators, it cannot be analyzed well forever. OxCGRT’s
scoring is based on the number of daily infected individuals while that
of the proposed paper is based on the number of daily deaths.

Lazarus et al. proposed COVID-19 Assessment Scorecard (COVID-
SCORE) for keeping governments accountable [10,11]. However, their
scorecard does not allow them to reach the key indicator, ‘‘digital
fences’’ since the scorecard is based on a multiple-choice questionnaire.

As far as we know, there are no objective evaluation indicators for
COVID-19 policies based on data science. The higher the number of
deaths, the greater the economic loss or the greater the poor policy
performance. To use the best policies to reduce the number of deaths,
we should adopt measures and methods from exceptional countries
with high scores.

This paper proposes SCORECOVID, a new Python Package Index

(PyPI) for scoring individual policies against covid-19 and mitigating

2

the pandemic. Scoring is based on the number of daily deaths per
the population in millions [8]. The proposed algorithm allows us
to compare individual policies and to discover the high-performance
countries. In the high-performance countries, we must investigate what
policies or features may influence the performance in order to mitigate
and end the pandemic. In other words, we must create a new dataset by
taking account of the investigated features or indicators for the future
work.

2. PyPI packaging

For PyPI packaging, the necessary procedures are composed of
seven steps:

1. Create a new github repository and make a README.md.
2. Build a new program for PyPI packaging.
3. Create a setup.py file as shown in Fig. 1.
4. Modify __init__.py and __main__.py
5. Create dist directory and build directory using setup.py.
6. Create a PyPI account.
7. Upload files in dist directory.

Seven steps are detailed as follows.
1. If you have your account on github.com site, create a new

repository with README.md file. If you have no account on github,
create a new account.

The following site is an example of scorecovid:
The example can be examined by a reviewer.
2. In this paper, scorecovid is a Python program of scorecovid.py as

PyPI packaging candidate. The program is shown in Fig. 2.
3. Create a setup.py file for creating three files: .whl file, .egg file,

and .tar.gz file.
The setup.py template is stored at the following site:
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy

/main/setup.py
Red-colored nine lines must be modified for your packing.
4. Modify __init__.py and __main__.py. Create a src directory. Then,

move two files to src. A template of __init__.py and that of __main__.py
are shown.

$ cat __init__.py
import scorecovid
import __main__
$ cat __main__.py
import scorecovid
To create a src directory:
$ mkdir src
Move two files to src directory.
$ mv __*.py src
Move scorecovid.py file to src directory.
$ mv scorecovid.py src
5. Use setup.py for generating the necessary files in dist directory

and build directory.
Run the following line command:
$ python setup.py install
$ python setup.py sdist bdist_wheel
In order to test a new PyPI package, scorecovid, run the following

command. Create a countries file.
Then, with or without countries file, run the following command.
$ scorecovid
It should show the scores of 12 countries.
6. In order to create a new account of PyPI. access to the following

site:
https://pypi.org/account/register/
7. Install twine library for checking the new PyPI package and

uploading the files to PyPI.
$ pip install twine

http://github.com
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://raw.githubusercontent.com/ytakefuji/score-covid-19-policy/main/setup.py
https://pypi.org/account/register/


Y. Takefuji Healthcare Analytics 1 (2021) 100005
Fig. 1. setup.py Python program.
In order to check three files, run the following command:
$ twine check dist/*
Finally, upload three files to PyPI site.
$ twine upload dist/*
If PyPI shows the link site, a new package was successfully up-

loaded.

3. scorecovid.py

scorecovid is very useful for scoring the performance of individual
health policies of countries. From the perspective of an evidence-based
approach, we should learn from countries that have good infection
control measures and methods during the pandemic7.

The calculated result forces us to navigate and update a policy
against the pandemic. Scoring the performance of individual policies
is calculated by dividing the number of deaths due to the covid-19 by
the population in millions8.

scorecovid is a Python program composed of several open-source
libraries such as scraping library and pandas DataFrame. scorecovid
automatically scrapes the latest information on total deaths and pop-
ulation from websites on the Internet and generates a result.csv file.
3

4. How to install and run scorecovid

Prepare a list of countries in a file entitled ‘‘countries’’ for scoring,
for example:

South Korea, India, Brazil, France, New Zealand, Taiwan, Sweden,
Japan, United States, Canada, United Kingdom, Israel

In the countries file, country names should be separated by commas.
In order to run scorecovid, run the following command for installation:

$ pip install scorecovid

pip is a PyPI package manager command for installation.

Type the following command to run scorecovid, the result will be
shown on the screen:

$ scorecovid

scoring the following 12 countries...

score is created in result.csv

date is 2021-06-15



Y. Takefuji Healthcare Analytics 1 (2021) 100005

Fig. 2. scorecovid.py Python program.

4



Y. Takefuji Healthcare Analytics 1 (2021) 100005

5

n
c
I
p
t

c
e
a

[
d
1

6

p
e
t
o
r
o
t
a

b

a
e
f

d
P
t
S
p
t
1
t
p

D

c
i

R

country deaths population score
New Zealand 26 4 6
Taiwan 460 23 20
South Korea 1993 51 39
Japan 14150 126 112
India 379573 1380 275
Canada 25943 37 701
Israel 6428 8 803
Sweden 14574 10 1457
France 110692 65 1702
United States 600285 331 1813
United
Kingdom

128181 67 1913

Brazil 490696 212 2314

. Discussion

While the conventional scoring policies [9–11] is based on the
umber of daily infected individuals (cases), the proposed scoring is
alculated by the number of daily deaths per the population in millions.
n dataset analysis and policy analysis, necessary indicators must be
rovided. Without key indicators, it is impossible to discover what is
he most effective indicators of policies against COVID-19.

The conventional scoring policies [9–11] failed in lacking a key indi-
ator, ‘‘digital fences’’. Until the vaccine was available, many countries
xcept countries using digital fences did not use any effective policy
gainst COVID-19.

Digital fences play a key role in mitigating the COVID-19 pandemic
8.14,15] as long as infection testing is available. The stronger the
igital fence, the more effective the policy will be against COVID-19 [8,
4,15].

. Conclusion and future work

This paper proposes the first open-source tool for scoring individual
olicies against COVID-19. The number of deaths is an indicator of
conomic and health policy scores. Important policy issues in response
o a pandemic such as this one would include a comprehensive review
f the healthcare delivery system and the development of emergency
esponse systems, strengthening of vaccine development as a means
f economic security, flexible responses to various regulations related
o vaccination, and focused and flexible fiscal spending based on data
nalysis and the vision of a future society.

Several indicators or features (vaccination rates, number of ICU
eds, etc.) should be evaluated in the future work. Cost-effectiveness
5

nalysis based on such a score for the degree of effort in addressing
ach feature will make it possible to verify each effectiveness in the
uture.

This paper discloses an objective scoring system using the ongoing
ata for pandemic containment and explains the open-source use of
yPI for two reasons. First, the essence of science is repeatability, and
his paper provides an opportunity to do so by releasing the program.
econdly, this paper provides the opportunity to do so by releasing the
rogram, and also offers the possibility of modification to the readers
hrough opensource. The proposed simple method is for scoring COVID-
9 policies, normalized by the mortality rate per 1,000,000 people, but
here is room for improvement depending on future research and data
rovided in the future.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

eferences

[1] npm, Node package manager, https://www.npmjs.com.
[2] maven, the maintainers of Maven Central Repository, http://maven.org/.
[3] go, go.dev is the hub for Go users providing centralized and curated resources

from across the Go ecosystem, https://pkg.go.dev.
[4] PYPL, PopularitY of Programming Language, https://pypl.github.io/PYPL.html.
[5] tiobe, tiobe-index, https://www.tiobe.com/tiobe-index/.
[6] PyPi, Find, install and publish Python packages with the Python Package Index,

https://pypi.org/.
[7] scorecovid, A package for scoring policies of covid-19, https://pypi.org/project/

scorecovid/.
[8] Y. Takefuji, Correspondence, N. Engl. J. Med. 384 (2021) e66, http://dx.doi.org/

10.1056/NEJMc2101280.
[9] T. Hale, N. Angrist, R. Goldszmidt, et al., A global panel database of pandemic

policies (Oxford COVID-19 Government Response Tracker), Nat. Hum. Behav. 5
(2021) 529–538, http://dx.doi.org/10.1038/s41562-021-01079-8.

[10] J.V. Lazarus, A. Binagwaho, A.A.E. El-Mohandes, et al., Keeping governments
accountable: the COVID-19 Assessment Scorecard (COVID-SCORE), Nat. Med. 26
(2020) 1005–1008, http://dx.doi.org/10.1038/s41591-020-0950-0.

[11] J.V. Lazarus, S. Ratzan, A. Palayew, F.C. Billari, A. Binagwaho, S. Kimball, et
al., COVID-SCORE: A global survey to assess public perceptions of government
responses to COVID-19 (COVID-SCORE-10), PLoS One 15 (10) (2020) e0240011,
http://dx.doi.org/10.1371/journal.pone.0240011.

[12] FCC, Remarks of FCC Commissioner Michael O’Rielly TPRC 44, https://docs.fcc.
gov/public/attachments/DOC-341544A1.pdf.

[13] Masaaki KAWAGOE, How Can japanese extended longevity be evaluated? https:
//www.esri.cao.go.jp/jp/esri/archive/bun/eibun/eibun197.pdf.

[14] S.C. Chen, Taiwan’s experience in fighting COVID-19, Nat. Immunol. 22 (2021)
393–394, http://dx.doi.org/10.1038/s41590-021-00908-2.

[15] Dyani Lewis, Contact-tracing apps help reduce COVID infections, data suggest,
Nature 591 (2021) 18–19, http://dx.doi.org/10.1038/d41586-021-00451-y.

https://www.npmjs.com
http://maven.org/
https://pkg.go.dev
https://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/
https://pypi.org/
https://pypi.org/project/scorecovid/
https://pypi.org/project/scorecovid/
https://pypi.org/project/scorecovid/
http://dx.doi.org/10.1056/NEJMc2101280
http://dx.doi.org/10.1056/NEJMc2101280
http://dx.doi.org/10.1056/NEJMc2101280
http://dx.doi.org/10.1038/s41562-021-01079-8
http://dx.doi.org/10.1038/s41591-020-0950-0
http://dx.doi.org/10.1371/journal.pone.0240011
https://docs.fcc.gov/public/attachments/DOC-341544A1.pdf
https://docs.fcc.gov/public/attachments/DOC-341544A1.pdf
https://docs.fcc.gov/public/attachments/DOC-341544A1.pdf
https://www.esri.cao.go.jp/jp/esri/archive/bun/eibun/eibun197.pdf
https://www.esri.cao.go.jp/jp/esri/archive/bun/eibun/eibun197.pdf
https://www.esri.cao.go.jp/jp/esri/archive/bun/eibun/eibun197.pdf
http://dx.doi.org/10.1038/s41590-021-00908-2
http://dx.doi.org/10.1038/d41586-021-00451-y

	SCORECOVID: A Python Package Index for scoring the individual policies against COVID-19
	Introduction
	Open-source packaging and language popularity
	Advantages of the proposed algorithm

	PyPI packaging
	scorecovid.py
	How to install and run scorecovid
	Discussion
	Conclusion and future work
	Declaration of competing interest
	References


