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Abstract 

A near-optimum parallel algorithm for solving facility layout problems is presented in this paper where the 
problem is NP-complete. The facility layout problem is one of the most fundamental quadratic assignment problems 
in Operations Research. The goal of the problem is to locate N facilities on an N-square (location) array so as to 
minimize the total cost. The proposed system is composed of N × N neurons based on an artificial two-dimensional 
maximum neural network for an N-facility layout problem. Our algorithm has given improved solutions for several 
benchmark problems over the best existing algorithms. 

Keywords: Facility layout; Quadratic assignment problem; Neural networks; Two-dimensional maximum neuron 
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1. Introduction 

The facility layout problem is one of the tradi- 
tional quadratic assignment problems originally 
presented by Koopmans and Beckmann in 1957 
[13]. The problem has been widely studied by 
many researchers in Operations Research and 
management science, and known to be NP-com- 
plete (NP, nondeterministic polynomial) [18]. 
Good reviews have been summarized in [14,7] 
and several benchmark problems have been given 
for comparing the algorithms [16,20]. Gilmore [6] 
and Lawler [15] independently developed branch 
and bound algorithms to find an optimum solu- 
tion. Several other branch and bound algorithms 
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have been proposed by Pierce and Crowston [17], 
Burkard [4], and Bazaraa [2]. Another optimum 
algorithm called cutting plane algorithm was pre- 
sented by Bazaraa and Sherali [3] and Burkard 
and Bonninger [5]. The optimum solutions have 
been confirmed only up to the 15-facility bench- 
mark problem. Because of the prohibitively long 
computational time required by the optimum al- 
gorithms, the near-optimum algorithms have been 
studied in order to generate a "good" solution in 
a short time. Some of the earlier near-optim 
algorithms are H63 [9], HC63-66 [10], CRAFT 
[11], FLAC [19], FRAT [12], and Biased Sampling 
(BS) [16]. Relatively new near-optimum algo- 
rithms are based on simulated annealing [24,8] or 
tabu search (TABU) [20]. One of the best simu- 
lated annealing methods for the facility layout 
problem is HSA proposed by Heragu et al. [8], 
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which outperformed all the existing schemes in 
terms of solution quality. HSA must prepare a 
"good" initial solution and use the simulated 
annealing to obtain a better solution where sev- 
eral parameters are to be tuned. 

The goal of the problem is to locate N facili- 
ties on an N-square (location) array so as to 
minimize the total cost. The mathematical ex- 
pression of the N-facility layout problem is given 
by: 

Minimize the total cost: 

N N N N 

E E E E ci,jdp,qVp,qVi,pl/5,q (1 )  
i=l j - i+l  p-I  q=l 

subject to 

N 

E V/,p = 1, for p = 1 ..... N, (2) 
i=1 

N 
Y'~ Vi, p = l ,  f o r i = l  ..... N, (3) 

p - I  

10 if facility # i  is assigned to 
V~,p = location #p ,  (4) 

otherwise, 

where ci, j is the cost between facility # i  and 
facility #j ,  dp,q is the manhattan grid distance 
between location # p  and location #q,  ci, j = c j, i, 
and dp,q = dq,p.  Note that the cost means the 
flow or the weight between two facilities. Fig. l(a) 
and Fig. l(b) show a solution of the 5-facility 
layout problem and the cost/distance table re- 
spectively where 5 facilities are allocated on a 
5-square array. The total cost is 33 (=  Cl,2dl, 2 q- 

Cl,3dl, 3 + c "( 1,4dl,4 + Cl,5dl, 5 --I- c2,3d2,3 + c2,4d2, 4 --l- 

c2, 5 <( d2, 5 -+- c3,4d3, 4 q- c < 3,5d3,5 -+- ¢4,5d4,5 = 5 -+- 2 
+ 8 + 3 + 6 + 0 + 4 + 0 + 0 + 5 ) .  Usually each 
problem has different optimum solutions with the 
same minimum total cost. Fig. 2 shows one of the 
optimum solutions for the same problem in Fig. 1 
where the total cost is 25. 

Hopfield and Tank proposed the first neural 
network for optimization problems [11]. They used 
a sigmoid neural network for the traveling sales- 
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Fig. 1. An example of the 5-facility layout problem, (a) A 
solution of the 5-facility layout problem. (b) The cost (lower 
left triangle)/distance (upper right triangle) table. 

man problem. Takefuji et al. have proposed a 
hysteresis McCulloch-Pitts neural network and a 
one-dimensional maximum (winner-take-all) neu- 
ral network for NP-complete problems [21-23]. 
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Fig, 2. An optimum solution for the 5-facility layout problem. 
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In this paper, a two-dimensional maximum neural 
network is newly introduced for solving the facil- 
ity layout problem, and the quadratic assignment 
problem in general. 

In the next section, we review the basic mecha- 
nism of the artificial neural network for optimiza- 
tion and combinatorics, and explain our neural 
network representation for the facility layout 
problem. In Section 3, we describe the neural 
network parallel algorithm, and then discuss the 
experimental results in Section 4 where several 
benchmark problems are used to show the effec- 
tiveness of our algorithm. We summarize this 
paper in Section 5. 

2. The neural network representation 

The mathematical model of the artificial neu- 
ral network consists of two components; neurons 
and weighted synaptic links. An output signal 
transmitted from a neuron propagates to other 
neurons as an input signal through the synaptic 
links. Every artificial neuron has the input U and 
the output V. The input of the i,j-th neuron U~d 
is updated by a motion equation which represents 
the weighted synaptic links between the i , j - th 
neuron and other neurons. The output of the 
i , j - th neuron is given by Vid =f(U/d)  where f is 
called the neuron's inpu t /ou tpu t  function. Note 
that V/d is also used in Eq. 1. The output of the 
i , j - th neuron V/d = 1 means that facility # i  is 
assigned to location #j .  

The inpu t /ou tpu t  function of the two-dimen- 
sional maximum neuron is given by: 

1. Va,b = 1 if Ua,b = max{ U/,i} ; 

2. Vc,d = 1 i fUc,d=max{Ui , / l i#a , j~b};  

3. Ve,f = 1 i fUe, f=max{Ui, i[ i~a,c , j~b,d};  

N. Vg,h = 1 if Ug,h = max{ U/d l i ~ a,c,c . . . . .  

j ~  b ,d , f  . . . .  }; 

V/,j = 0 o therwise ,  where  i 4~ a , c , e , . . . , g ,  

j 4: b , d , f , . . .  ,h. 

(5) 

For example, facility # a  should be assigned to 

location # b  if Ua, b is the largest among all U~d's, 
and then facility # c  should be assigned to loca- 
tion # d  if Uc, d is the largest among all U~,/s 
except for i = a or j = b. Note that if two or more 
than two neurons have the same largest input, 
one neuron should be selected arbitrarely from 
among them. The system is composed of N × N 
neurons. N neurons always generate nonzero 
outputs and the other (N  2 -  N )  neurons gener- 
ate zero. This two-dimensional maximum neuron 
model satisfies the constraints of Eqs. (2)-(4). 

The motion equation of the i , j - th neuron is 
generally given by: 

dU/d c':qE ( Vl ,  1 . . . .  ,Vi,j . . . . .  VN,N) 

dt = OV/d , (6) 

where E is the computational energy function 
following an N × N-variable function: E(V1,1 . . . . .  
Vi, / . . . . .  VN, N). The artificial neural network pro- 
vides a gradient descent method so as to mini- 
mize the fabricated energy function E. Usually 
the right term in Eq. (6) can be constructed by 
considering the necessary and sufficient con- 
straints a n d / o r  the cost function from the given 
problem because they give information on inter- 
connections of the artificial neural network. The 
combination of those constraints and the cost 
function, however, complicates the motion equa- 
tion and makes it especially difficult to compute 
the cost function. The proposed two-dimensional 
maximum neural network needs only the cost 
function since all the necessary and sufficient 
constraints, namely Eqs. (2)-(4), are included in 
the neuron model. It provides a faster conver- 
gence speed and higher convergence rate than 
those of conventional McCulloch-Pitts neuron or 
sigmoidal neuron models which require both those 
constraints and the cost function in the motion 
equation. 

The motion equation of the i , j - th neuron for 
the facility layout problem is given by: 

dU/d 
= Q - R ,  (7)  

dt 

where Q and R are the objective cost and the 
real total cost respectively. Q can be set by a user 
as an expected total cost or even set to be zero. 
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Our  simulation is te rmina ted  when  R reaches Q. 
It means  that  dU~,Jdt is always negative or  zero. 
R is given by Eq. (1) where  it is assumed that  
facility # i  is al located to location # j .  For  exam- 
ple, to calculate dU2,1/dt at time t in Fig. l(a), 
facility # 2  in location # 2  is al located to location 
#1  temporar i ly  as shown in Fig. 3 while facility 
#1  in location #1  is moved to location # 2  tem- 
porarily. The  real total cost R is 28. If  Q = 20, 
then dU2.1/dt = 2 0 -  28 = - 8 .  To calculate 
dU2,2/dt, the assignment  of  facility # 2  to loca- 
tion # 2  must  be mainta ined because  facility # 2  
has been  actually assigned to location # 2  at time 
t. Since R is 33, dU2,2/dt = - 1 3 .  Eq. (7) de- 
scribes the degree  of  penal ty which discourages 
the highly penal ized neurons  f rom generat ing 
nonzero  outputs.  

In order  to improve the global min imum con- 
vergence  and to accelerate the simulation speed 
[23], Eq. (7) was replaced by: 

dUi o = [ ( Q - R ) V i j  i f ( t m o d l 0 )  < t o ,  

d t  ~ Q - R otherwise,  (8) 

where  t and to are the number  o f  i teration steps 
and a constant  pa ramete r  respectively. In  the first 
equation,  dUi ,Jdt  = 0 if V~,j = 0. In o ther  words,  
the first equat ion is activated and imposes the 
penal ty on the i,j-th neuron  only when it gener-  
ates a nonze ro  output .  It gives zero-genera t ing  
neurons  chances  to genera te  nonze ro  outputs  and 
allows the system to escape f rom local minima. 
The  to is only one pa rame te r  and helps the state 
of  the system to avoid stacking at the local rain- 
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Fig. 3. How to calculate dUe, 1/dt. 

ima. The  convergence  theorem with p roof  for the 
two-dimensional  maximum neural  ne twork is 
given in Appendix  A. 

3. Parallel algorithm 

A simulator based on the p roposed  neural  
network was developed and a synchronous  paral- 
lel system was simulated. The  first-order Euler  
me thod  was used to solve N 2 equat ions in Eq. (8) 
numerically. The following steps describe the 
p roposed  algori thm for an N-facility layout prob- 
lem. Note  that  t limit is the maximum number  of  
i teration steps for the system terminat ion condi- 
tion. 

Step O. Set t = 0, and set t_limit, Q, and w for 
the N-facility problem. 

Step 1. Initialize values of  U,j( t )  for i , j  = 
1 . . . .  ,N  using uniform random numbers.  

Table 1 
Summary of the total costs 

N-facility problem H63 [9] HC63- 66 [10] CRAFT [1] BS [16] FLAC [19] FRAT [12] TABU [20] HSA [8] This work 

5 [16] 25 29 25 25 25 28 - 25 25 
6116] 43 43 43 43 43 45 - 43 43 
7116] 77 74 74 74 74 80 - 74 74 
8116] 109 107 107 107 107 111 - 107 107 

12116] 300 304 289 289 289 302 - 289 289 
15116] 617 578 583 575 585 602 575 575 575 
20116] 1384 1319 1324 1304 1303 1335 1285 1285 1285 
30 [16] 3244 3161 3148 3093 3079 3160 3062 3062 3062 
42[20] . . . . . .  7932 7927 7926 
49[20] . . . . . .  11768 11739 11732 

-: not available. 
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Step 2. E v a l u a t e  Vi,j(t) for i, j = 1, . . .  ,N, using 
Eq. 5. 

Step 3. Compute Eq. (8) for the N × N neural 
network for i, j = 1 . . . . .  N to obtain AU,.j(t): 

dU~,j (9) 
AU/d(t) = at  

Step 4. AU/d(t) >__ O, then generate the solution 
and terminate this procedure. 

Step 5. Update U/d(t + 1) for i , j  = 1 . . . . .  N ,  
based on the first-order Euler method: 

U,.d(t + 1) = Uid(t ) + AU/,j(t). (10) 

Step 6. Evaluate V~d(t + 1) for i , j  = 1 . . . . .  N ,  
using Eq. (5). 

Step 7. If t = t limit, then terminate this pro- 
cedure; else increment t by 1 and go to Step 3. 

Steps 3 through 5 can run in parallel. The pro- 
posed algorithm was tested on a Sun Sparcl0 and 
an HP 9000/710 computer although the algo- 
rithm is executable either on a sequential ma- 
chine or a parallel one. 

4. Experimental results 

8 6 29 34 11 42 25 

3 38 40 15 7 17 41 

1 37 21 9 12 32 5 

16 24 4 20 26 19 18 

36 30 39 14 35 10 2 

23 22 33 28 31 13 27 

The total  cost  = 7926 

Fig. 4. An improved solution for the 42-facility benchmark 
problem. 
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21 8 10 35 41 14 25 21 8 10 35 41 42 25 

19 32 15 9 42 7 26 19 32 15 9 14 7 26 

17 4 24 1 13 36 47 17 4 24 1 13 36 47 

The total cost = 11732 The total cost = 11732 

Fig. 5. Two different improved solutions for the 49-facility 
benchmark problem. 

We have examined ten benchmark problems to 
test our algorithm. Table 1 summarizes the solu- 
tion quality of the proposed algorithm and those 
of the best existing algorithms. The proposed 
algorithm generated better solutions in every 
benchmark problem. Our simulator discovered 
improved solutions in the 42-facility and the 49- 
facility benchmark problems. Fig. 4 shows the 
configuration of the 42-facility problem with the 
total cost of 7926 while the best known total cost 
was 7927 [8]. Fig. 5(a) and Fig. 5(b) show differ- 
ent configurations of the 49-facility problem with 
the total cost of 11732 while the best known total 
cost was 11739 [8]. The system converged to these 
solutions within 9000 iteration steps. Table 2 de- 
picts a summary of the computation time for the 
proposed algorithm. The value of to used for 
each benchmark problem is also shown in Table 
2. When the problem size is increased, more 
computation time is required. Fig. 6 shows the 
relationship between the total costs obtained by 

the proposed algorithm and the convergence fie- 
quency for the 30-facility layout problem. Note 
that the result was obtained by 1000 simulation 
runs using different initial uniform random input 
sets. Better total costs were obtained as t limit 
became larger. Fig. 6 shows that our algo'~ithm 

Table 2 
Summary of the computation time and value of to 

N-facility problem CPU time (s) to 

5 [16] 0.04 9 
6 [16] 0.04 9 
7 [161 0.04 9 
8 [161 0.04 7 

12 [16] 0.06 5 
15 [16] 0.34 5 
20 [16] 2.64 3 
30 [16] 56.01 3 
42 [20] 1746 2 
49 [20] 3334 2 

CPU times were measured on a HP 9000/710. 
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Fig. 6. The distribution of the total costs for the 30-facility problem. 

found "good"  solutions even from random initial 
configurations. 

Appendix A. Convergence property of the two-di- 
mensional maximum neural network 

5. Conclusion 

In this paper  we have proposed a near-opti-  
mum parallel algorithm based on the two-dimen- 
sional maximum neural network for facility layout 
problems. The proposed algorithm uses N × N 
neurons for an N-facility layout problem, where 
only one simple pa ramete r  to is needed to tune 
and "good"  initial configurations are not re- 
quired. The simulation results demonstra ted that 
our algorithm is capable of  generating bet ter  so- 
lutions over the existing algorithms for some of 
the most widely used benchmark  problems. Newly 
discovered solutions are able to substantiate the 
effectiveness of the proposed algorithm. 

We are going to not only solve larger size 
problems but also apply the proposed algorithm 
to other quadratic assignment problems in the 
future. 

The convergence property of  the two-dimen- 
sional maximum neural network is determined by 
the time derivatives of the energy of the system, 
d E / d t .  Lemma 1 is introduced to prove that the 
proposed system is always allowed to converge to 
the equilibrium state or the optimal (near-opti- 
mum) solution. 

Ikmma 1. d E / d t  < 0 is satisfied under the follow- 
ing two conditions: 

(1) dU~,i/dt = - bE/OVid = Q - R and 
(2) The i n p u t / o u t p u t  function o f  the neuron 

model  is given by: 

1. Va. b = 1 

2. ~ ,a  = 1 

3. Ve,f= 1 

if Ua, b = max{U/j}; 

if Uc, d = max{U/j l i • a, j * b}; 

if Ue, f 

= max{U/,j I i ~ a , c , j  ~ b,d}; 
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N. Vg,h 1 

v, . j  = o 

if Ug,h = max{Uij l i 4: a,c,e . . . . .  

j 4: b ,d,f  . . . .  }; 

otherwise. 

(A.1)  
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Proof.  Consider  the derivat ives of  the computa -  
t ional energy E with respec t  to t ime t. 

d E  dU/, j  dV/, j  0E 

dt  = ~ ]~ d t  dU/,j Ol~/,j i j 

( dU/,y/2 dV/,j 

= - ~ .  ~ .  ~ d t  ] dU/,' j 

where  OE/OVi, j  is rep laced  by - d U i , j / d t  (Condi-  
t ion 1). Le t  

dUi, j Ui,j( t + d t )  - U/, j( t)  

d t  d t  ' 

dV/,j Vi,y(t + a t )  - V/,y(/) 

dU/3 U,.,j(t + d t )  - U/3(t  ) " 

A ssume  tha t  the  input  of  the ( a ,b ) - th  neu ron  is 
only changed  dur ing t ime t and  t + d t  in the 
system. 

( dU/,j )2 dV/,j 

- l~  j~- , d t  dU/3 

V/,y(t + d t )  - V/,y(t ) 
× 

Ui,j( t + d t )  - Ui,y( t ) 

= - E E U~j(t + d t )  - U~,j(t) 
i j ( d t )  2 

× (V~j(t + d t )  - V/a(t)) 

U a , b ( t + d t )  - -Ua ,b ( t )  

( d t )  2 

× (Va,b(t + d t )  - V o , b ( t ) ) .  

I t  is necessary  and  sufficient to consider  the 
following two cases (Condi t ions  1 and 2): 

(1) V~,b(t + d t ) =  V~,b(t); 
(2) Va,b(t + d t )  = 0, Va,b(t) = 1. 
I f  Case 1.is satisfied, then  

[ dUi y l 2 dVi j 

because  V~,b(t + d t )  - Va,b(t) = O. 

I f  Case 2 is satisfied, then  

because  Va,b(t + d t )  - V~,b(t) = -- 1 and 

Uid(t  + d t )  - U/,y(t) dU/,y 

d t  d t  

(Condi t ion  1). 

T h e r e f o r e  d E / d t  <_ O. [] 

Q - R < O  
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