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A neural network parallel algorithm for clique vertex-partition
problems

NOBUO FUNABIKIt, YOSHIYASU TAKEFUJIt,
KUO CHUN LEE§ and YONG BEOM CHOt

A parallel algorithm based on a neural network model for solving clique vertex
partition problems in arbitrary non-directed graphs is presented in this paper. A
clique of a graph G=(V, E) with a set of vertices V and a set of edges E is a
complete subgraph of G where any pair of vertices is connected with an edge. A
clique vertex-partition problem of a graph G is to partition every vertex in V into a
set of disjointed cliques of G. The clique vertex-partition problem with the
minimum number of cliques in an arbitrary graph is known to be NP-complete.
The algorithm requires nm processing elements for the n vertex m partition
problem. A total of 10 different problems with 8 vertex to 300 vertex graphs were
examined where the algorithm found a solution in nearly constant time. The circuit
diagram of the neural network model is also proposed in this paper.

I. Introduction

A clique of a graph G= (V, E) with a set of vertices V and a set of edges E is a
complete subgraph of G where any pair of vertices is connected with an edge in E. A
clique vertex-partition problem of a graph G is to partition every vertex in V into a
set of disjointed cliques of G. It is known that the problem of partitioning vertices
with the minimum number of disjointed cliques in an arbitrary graph is NP
complete (Garey and Johnson 1979)

Figure I(a) shows an 8-vertex 17-edge graph. It is known that the graph is
partitioned with the minimum number of three cliques where the two different
solutions are shown in Figs I(b) and I(c) respectively.

Tseng and Siewiorek (1983) proposed an ad hoc algorithm for the clique vertex
partition problem in an arbitrary graph. They showed three important applications
of the clique vertex-partition problem in digital systems: the storage element
allocation problem, the data operator allocation problem, and the interconnection
unit allocation problem. Unfortunately they neither discussed the time complexity
nor the solution quality of their algorithm.

Gregory et al. (1986) discussed the lower and upper bounds of the minimum
number of cliques for the clique edge-partition problem in a cocktail party graph. In
the clique edge-partition problem in a graph G=(V,E), every edge in E is
partitioned into a set of disjointed cliques of G. Erdos et al. (1988) discussed the
lower and upper bounds of the minimum number of cliques for the clique edge
partition problem in an arbitrary graph. McGuinness and Rees (1990) discussed the
minimum number of cliques for the clique edge-partition problem in a line graph.
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Figure I. An 8-vertex 17-edge graph and the minimum clique vertex partitions: (a) an
8-vertex 17-edge graph; (b) minimum clique vertex-partition number I; (e) minimum
clique vertex-partition number 2.

Grotschel and Wakabayashi (1990) discussed the minimum weight clique vertex
partition problem in a complete graph where each edge in the group has a weight.
Few algorithms have been reported for the clique vertex-partition problem in an
arbitrary graph within our knowledge.

This paper proposes the first parallel algorithm for solving a clique vertex
partition problem in an arbitrary graph where it is based on the artificial neural
network model. The algorithm requires nm processing elements for an n-vertex
m-partition problem where n vertices of a graph are partitioned into m disjointed
cliques. Due to neural network computing, the algorithm not only runs on a
sequential machine but also on a parallel machine with maximally nm processors
without a rigorous synchronization procedure.
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The processing element is called a neuron in the neural network model because it
performs the function of a simplified biological neuron model. The processing
element has an input and an output. Among several proposed neuron models, the
simplext McCulloch-Pitts (1943) binary neuron model is adopted in this paper:

V;= I if Vi>O

ootherwise (I)

where Vi and V; are the input and the output of the ith processing element
respectively. The change of the input V j is given by the partial derivatives of a
computational energy function E(V" ... , v,,) which is called a motion equation:

dV j

dt

aE(V" ... , Vn)

av; (2)

Note that n is the number of processing elements required in the problem. The
energy function E represents the distance between the current state of the neural
network system and the solution state. The energy function is given by considering
the necessary and sufficient constraints in the problem. The goal of the neural
network model for solving optimization problems is to minimize the energy
function. A theorem in the Appendix states that the motion equation forces the state
of the neural network system composed of the McCulloch-Pitts neurons to converge
to a local minimum (Takefuji and Lee 1991).

A neural network model for solving an optimization problem was first intro
duced by Hopfield and Tank (1985, 1986). Wilson and Pawley (1988), and Paielli
(1988) criticized the stability and the solution quality of the Hopfield neural network
model. Takefuji and Lee (1991) pointed out that the decay term in the Hopfield
neural network model is harmful for the system convergence. They have also used
the McCulloch-Pitts neuron model instead of the sigmoid neuron model in the
Hopfield neural network model in order to improve the convergence speed. More
than 15 successful neural network applications for solving NP-complete and
optimization problems have been reported in the last two years (Takefuji and Lee,
1989, 1990a, b, 1991 a, b, Kurokawa et al. 1990, Takefuji et al. 1990a, b, Funabiki
and Takefuji 1991 a, b,c,d,e,f, Takefuji 1991, 1992, Takefuji et al. 1991).

2. Neural network representation

A two-dimensional neural network model is used for solving a clique vertex
partition problem in this paper. Figure 2 shows the neural network representation
for solving the 8-vertex 17-edge graph problem in Fig. I where 8 vertices be
partitioned into 3 cliques. Because each vertex has three candidates (cliques), three
processing elements are required for each vertex. As shown in Fig. 2(a) the total of
24 (= 8 x 3) processing elements is required for the 8-vertex 3-partition problem.
Generally the total of nm processing elements is required for solving the n-vertex m
partition problem. The output of the ijth processing element represents whether the
ith vertex be partitioned into the jth clique or not. When the output of the ijth
processing element is non-zero (V;j= 1), the ith vertex is partitioned into the jth
clique. When the output of the ijth processing element is zero (V;j=O), the ith vertex
is not partitioned into the jth clique. Figure 2(b) shows the solution state of the 24
processing elements where the black square and the white square indicate the non-



360 Nobuo Funabiki et al.

zero output and the zero output respectively. In Fig. 2(b) the second, sixth and
seventh vertices are partitioned into the first clique, the third, fourth and eighth
vertices into the second clique, and the first and fifth vertices into the third clique.
The solution state of the neural network system corresponds to Fig. I(b).

One and only one processing element among m candidates for the ith vertex must
have non-zero output. This constraint is given by:

(3)

It is zero if and only if one processing element among m candidates has non-zero
output.

Any pair of vertices in each clique must be connected with an edge which is given
in the original graph. In other words, the ith vertex must not be partitioned into the
jth clique if the ith vertex has no edge with a vertex which has been already
partitioned into the jth clique. This constraint is given by:

n

L (I - dik ) Jl{..j
k=l
k'1'i

(4)

where dfk is I if the original graph has an edge between the ith vertex and the kth
vertex, 0 otherwise, and it is always satisfied that d ik = dki (non-directed graph) and
dlf=O. It is non-zero if a vertex in the jth clique has no edge with the ith vertex.
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Figure 2. Neural network representation for the clique vertex partition problem in Fig. 1:
(a) 8 x 3 processing elements for the problem in Fig. 1; (b) convergence of the
processing elements to a solution.
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The motion equation for the ijth processing element in the n-vertex m-partition
problem is given from (3) and (4):

(5)

The A term forces one and only one processing element among m candidates for the
ith vertex to have non-zero output where the ith vertex is partitioned. The B term
performs the inhibitory force if a vertex in the jth clique has no edge with the ith
vertex. A and B are constant coefficients. The energy function E for this problem is
given by considering (2) and (5):

(6)

As shown in the Appendix only the local minimum convergence is guaranteed in
the neural network model although we must consider the global minimum conver
gence. In order to increase the frequency of the global minimum convergence, the
following three heuristics have been empirically introduced:

(I) The hill climbing heuristic: the following two terms are added to the motion
equation in (5):

(7)

where h(x) is I if x=O, 0 otherwise. C and D are constant coefficients. The C
term encourages the ijth processing element to have non-zero output if no
processing elements for the ith vertex have non-zero output. The D term
encourages the ijth processing element to have non-zero output if no
processing elements for the ith vertex have non-zero output and the ith vertex
can be partitioned into the jth clique without violations.

(2) The omega function heuristic: two forms of the B term are used periodically
in the motion equation:

-B (J, (l-dik)"k j ) V;j if (tmod T)<w

k:#j

otherwise (8)

where t is the number of iteration steps, and T and ware constant
parameters.

(3) The input saturation heuristic: the input of the processing element is confined
between two values:
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(9)

where U _max and U _min are the constant upper and lower bounds of the
input value Uij respectively.

3. Parallel algorithm

The following procedure describes the parallel algorithm for the n-vertex
m-partition problem based on the motion equation with three heuristics. The first
order Euler method is used to solve the partial differential equations. The data set of
coefficients and parameters are empirically determined.

(0) Set 1=0. A =B= I. C=2. D=4. T= 10, w=7. U _max=20. U _min= -20,
and Lmax=500.

(I) The initial values of the input Uij(t) for i = I, ...• nand j= I •... , mare
uniformly randomized between 0 and U _min. The initial values of the
output 1'1/1) for i=I •... .n andj=I •... ,m are assigned to O.

(2) Compute the change of the input L'1Uij(t) based on the motion equation in (5)
with the hill climbing heuristic in (7) and the omega function heuristic in (8):

if'{r mod T)<w

or otherwise

L'1Uij(t) = -A (JI V;k(t)-I)-B(JI (I-dik)v..l l»)

k:#i

+ Ch (1 V;k(t») +Dh (JI V;il) +&: (I-dik)v../I») (II)

(3) Update the input Uij(t+ I) based on the first-order Euler method:

Uij(t+ 1)= U;/I)+L'1UJI)

(4) Use the input saturation heuristic in (9):

(12)
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UiJ{t+ 1)= U _min if Uiit+ 1)< U .min (13)

(5) Update the output V;/t+ I) based on the McCulloch-Pitts neuron model:

o otherwise

(6) Check the termination condition if (J-';j(t) = 1) and

n

L (l-dik)~it)=O for i=I, ... ,nand3je{1, .. "m}
k=l
k~i

(14)

or t = T_max, then terminate this procedure else increment t by I and go to
step 2.

The state of nm processing elements for the n-vertex m-partition problem can be
updated synchronously or asynchronously. In this paper the synchronous parallel
system is simulated on a sequential machine. The synchronous parallel system can be
performed on maximally nm processors. The following procedure/programme
outlines how to simulate the synchronous parallel system using a sequential machine
as if the programme runs on the parallel machine:

Program parallel-simulator-on-a-sequential-machine

initialization of U jj and V;j for i: = I to n and for j: = 1 to m;

{·"Main Programmew'"}
while (a set of conflicts is not empty) to
begin

{·"Updating all input values'"?"}
for i: = 1 to n do
for j: = 1 to m do

Vii = Ujj+AUij;
{·"End of the first loop·"}

{·"Updating all output values"·}
for i: = 1 to n do
for j: = I to m do

If V ij> 0 then V;j: = 1 or otherwise "Ii = 0;
{·"End of the second loop·"}

end;
{"·Main Programme end·"}
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In the first loop all input values Uij are sequentially updated while all output
values "ij are fixed. Then in the second loop all output values "ij are sequentially
updated while all input values Uij are fixed. It is equivalent to simultaneously
updating the values of all inputs and outputs.

4. Simulation results and discussion

In order to verify the proposed algorithm the simulator has been developed on
Macintosh SE/30 and IIfx. The programme was coded in Turbo Pascal. Ten clique
vertex-partition problems in the table were examined where the number of vertices in
the graphs was varied from eight to 300. Except the 8-vertex l7-edge graph problem,
edges in the graphs were randomly generated. Figures 3 and 4 show the original
graphs and solutions in the 25 vertex 162 edge graph problem and in the 50-vertex
631-edge graph problem respectively. In Fig. 3(b) 25 vertices are partititioned into
six cliques which are indicated by A, B, ... , F. For each one of ten problems 100
simulation runs were performed from different initial values of Uiil). The table also
summarizes the simulation results where the average number of iteration steps to
converge to the solution and the convergence frequency are shown. Figure 5 shows
the relationship between the number of iteration steps to converge to the solution
and the frequency in two problems. The simulation results show that the state of the
neural network converged to the solution in nearly constant number of iteration
steps. We conclude that with nm processors the proposed algorithm finds a solution
for an n-vertex m-partition problem in nearly constant time.

5. Circuit design of the neural network

Figure 6(a) shows a clique vertex-partition problem with a 4-vertex 4-edge graph.
The total of eight processing elements is required in this problem because four
vertices be partitioned into two-cliques as shown in Fig. 6(b). Figure 7 outlines the
analogue circuit diagram of the neural network model for solving the 4-vertex 2
partition problem. Figure 8(a) depicts the analogue circuit diagram of the II th
processing element in Fig. 7. The output of the first operational amplifier is
equivalent to the right side of the motion equation with the hill climbing heuristics
and the omega function heuristic:

Number Number Average Convergence
of Number of iteration frequency

Problem vertices of cliques steps to to
number n edges m solutions solutions

1 8 17 3 28·9 90%
2 25 162 6 189·0 9%'
3 50 306 17 178·2 20%
4 50 631 10 270·3 10%
5 50 939 6 179·6 16%
6 100 2475 18 238·8 21%
7 150 5618 26 215·7 51%
8 200 9968 32 225·8 32%
9 250 15577 39 213-9 54%

10 300 22484 46 178·2 86%

Specifications of simulated problems and simulation results.
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Figure 3. A 25-vertex 162-edge graph problem and the 6-clique solution: (0) 25-vertex
162-edge graph; (b) 6-clique solution.
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(a)

(b)

Figure 4. A 50-vertex 63 l-edge graph problem and the IO-clique solution: (a) 50-vertex-631
edge graph; (b) lO-cliquc solution.
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Figure 5. Relationship between the number of iteration steps to converge to solutions and
the frequency: (a) 150-vertex 5618-edge graph problem; (b) 2S0-vertex 15577-edge
graph problem.

(15)dUl1 = -R (VI 1 + V12 + V3 1 _ V,,_ Yy _ v..)
dt R. Rb e, R" s; R,

The third term V3 1/Rc in (15) follows the omega function heuristic where the circuit
diagram is described in Fig. 8(b). The clock input to the OR gate in Fig. 8{b)
corresponds to the modulo function in (8). The fifth term Yy/R; and the sixth term
v../R z in (15) follow the hill climbing heuristics where the circuit diagram are
described in Fig. S(c) and Sed) respectively. The second operational amplifier in Fig.
8(a) integrates dU lI/dt into - U 11' The third operational amplifier reverses the sign
into U I I' The last component outputs the binary voltage Vii according to U I I

where the function f(x) represents the binary function. The details of the circuit
diagrams are discussed in Takefuchi and Lee (1991 a).

We simulated the proposed neural network circuit in order to verify the
performance. Figure 9(0) and (b) show the transition of inputs U and outputs V
from the initial state of the system to the solution state in the 4-vertex 2-partition
problem. The solution state in this simulation corresponds to Fig. 6(b). Note that the
time step is 0·05 s and the total number of iteration steps is 50. Figure 9(a) depicts
that the hill climbing heuristics sometimes drastically increase the inputs U in order
to escape from a local minimum, and that two inputs U II and U 12 are competing
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with each other for the state of the system to converge to the feasible solution. The
similar situations are also observed in Fig. 9(b).

6. Conclusion

This paper proposes the first parallel algorithm for clique vertex-partition
problems in arbitrary graphs. The algorithm is based on the neural network model
where it requires nm processing elements for the n-vertex m-partitition problem. A
total of ten different problems was examined where the algorithm found a solution
in nearly constant time with nm processors. The algorithm achieves the goal of the
parallel computation in terms of the computation time and the solution quality. The
circuit diagram of the neural network model is also proposed in this paper.

Appendix

Theorem

The system always satisfies !:lEI!lt ~ 0 under two conditions such as !:lU;/!:lt
= - !:lEI!:l V; and V; = f( Ui) where E is the computational Liapunov energy function
andf(U j ) is the McCulloch-Pitts binary function:

=0 otherwise

Proof

Consider the derivatives of the computational energy E with respect to time t.

1 4...----....

2

1

2

(a)

3

3

(b)

Figure 6. A 4-vertex 4-edge graph problem and the 2~clique solution: (a) 4-vertex 4-edge graph
problem; (b) 2-clique solution.
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Figure 7. Circuit diagram of the neural network for the 4-vertex 4-edge graph problem in
Fig. 6.

AE All, AE All,(AU.) AE ( AU.)-=L-' -=L-' __, where - is replaced by __I

At i At AV; i At At AV; At

= _ L (6.U i 6. V;) (AUi) = _ L (A V;) (AU;)2
j At AUj At i AU; At

Let AVilAt be {Ui(t+At)-V;(t)}/At. Let AV;/AUi be {V;(t+At)- ~(t)}/{Vi(t

+ At) - Vj(t)}.
It is necessary and sufficient to consider the following two regions:

Region 1: Vi(t) >0 and V;(t) = I

Region 2: Vj(t)~O and V;(t)=O
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Figure 8. Circuit diagram of the 11th processing element in Fig. 7: (a) analogue circuit
diagram of the 11th processing element; (b) circuit for the omega function heuristic (B
term); (e) circuit for the hill climbing heuristic (C-term); (d) circuit for the hill climbing
heuristic (D-term).

In Region I we must consider four possible cases for Ui(t+.6.t):

(a) U;(l+.6.t) > Uj(t)

(b) 0< Uj(t+.6.t)< Uj(t)

(e) U,(t+.6.t):<;O< Ui(t)

(d) Uj(t+L\t)= Uj(t)

In (a) and (b), V;(t+L\/) = V;(t) = I=>L\V;/.6.U j=O. Therefore L\E/!J.t=O.
In (d), L\UJ.6.t=O=>L\E/M=O.
In (e), V;(t+ at) =O=>L\ V;/L\U j= (0- 1)/(negative number) > 0 and .6.UJM <0. There
fore L\E/M<O.
It is concluded that L\E/.6.t:<; 0 is always satisfied in Region I.
Similarly, in Region 2, .6.E/L\t:<;O is always satisfied. This completes the proof. 0
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Figure 9. Simulation result of the neural network circuit; (a) transition of the states of four
processing elements; (b) transition of the states of four processing elements.
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