
GNU Development Environment for the
AVR Microcontroller

Rich Neswold
<rneswold@enteract.com>

June 23, 2000

Contents

1. Introduction 5

1.1. To-do . 5

2. Installing the GNU Tools 7

2.1. GNU Binutils . 7

2.1.1. Downloading the Source . 7

2.1.2. Building the Project . 7

2.1.3. Installing the Tools . 8

2.1.4. An Alternative . 9

2.2. AVR-GCC . 9

2.2.1. Downloading the Source . 9

2.2.2. Building the Project . 9

2.2.3. Installing the Tools . 10

2.3. AVR-LIB . 10

2.3.1. Downloading the Source . 10

2.3.2. Building the Libraries . 10

2.3.3. Installing the Libraries and Header Files 10

3. Using the GNU Tools 11

3.1. To-do . 11

4. Application Start-up 13

5. Memory APIs 17

5.1. Program Memory . 17

5.2. EEPROM . 21

3

Contents

6. Interrupt API 25

7. I/O APIs 29

7.1. I/O Port APIs . 29

7.2. Watchdog API . 33

A. AVR-GCC Configuration 35

A.1. Assembler Options . 35

A.2. Compiler Options . 35

A.3. Compiler-defined Symbols . 36

A.4. Register Usage . 36

4

1. Introduction

1.1. To-do

hings to add to this chapter:

• A brief introduction to the AVR processors.

• A brief introduction to the GNU compiler tools.

• The programmers that made this tool set possible.

• The fact that all the APIs mentioned in this document have been carefully written
and generate tight assembly code.

• Mention the AVR mailing list and how to subscribe.

This document is based upon version 2.95.2 of the GNU tools. It also refers to version
20000514 of avr-libc.

5

1. Introduction

6

2. Installing the GNU Tools

This chapter shows how to build and install a complete development environment for
the AVR processors using the GNU toolset.1

I created an area for the AVR tools under /usr/local to keep this stuff separate from
the base system. As root, I chown’ed /usr/local/avr under my normal account. This
way, I don’t have to be root to install the tools. All the instructions assume the tools
will be installed in this location. If you want to place them in a different locations you
need to specify the new location using the --prefix option.

2.1. GNU Binutils

Before the compiler can be built, various utlities need to be installed. Since the compiler
converts C only to assembly language, an assembler and linker (and librarian, etc.) need
to be built and installed for the AVR processors. The GNU binutils can provide this
support.

2.1.1. Downloading the Source

The binutils source archive, used in preparing this document, is version 2.9.5.0.13. You
also need to apply AVR-specific patches.2 The two files can be downloaded using the
URLs in Table 2.1. Create a directory in which to build the tools and put the dpwnloaded
files in it. You are now ready to build the utilities.

2.1.2. Building the Project

The first step is to pull the source from the archive and apply the patches to the code.

$ bunzip2 -c binutils-2.9.5.0.13.tar.bz2 | tar xf -
$ cd binutils-2.9.5.0.13
$ gunzip -dc ../binutils-2.9.5.0.13-avr-patch-1.1.gz | patch -p1

1These steps worked on my system, which is running FreeBSD 4.0. If there are problems with any of
these instructions on your system, please let me know so I can resolve any problems.

2The AVR patches have been committed to the GNU project, so future releases will have AVR support
built-in.

7

2. Installing the GNU Tools

Tool Location

GNU binutils

ftp://home.overta.ru/users/denisc/binutils-
2.9.5.0.13.tar.bz2
http://medo.fov.uni-mb.si/mapp/uTools/avr-gcc/binutils/-
binutils-2.9.5.0.13-avr-patch-1.1.gz

AVR-GCC

ftp://ftp.freesoftware.com/pub/gnu/gcc/gcc-core-
2.95.2.tar.gz
http://www1.itnet.pl/amelektr/avr/gcc/gcc-core-2.95.2-avr-
patch-1.1.gz

AVR libc

http://www1.itnet.pl/amelektr/avr/libc/avr-libc-
20000514.tar.gz
http://www.enteract.com/˜rneswold/avr/avr-libc-20000514-
diff.gz

AVR Programmer

Table 2.1.: “Tarball” Locations

The next step is to configure and build the tools. This is done by supplying arguments to
the configure script that enable the AVR-specific options and then making the project.3

$ configure --target=avr \
--prefix=/usr/local/avr \
--disable-nls

$ make

On my system, I disabled international support by using the --disable-nls option. I
did this mainly because I was having problems linking the tools (the linker couldn’t find
libintl.a). Whether this is an incompatibility problem with FreeBSD, or if it’s a bug
in the makefile, I don’t know.

2.1.3. Installing the Tools

If the tools compiled cleanly, you’re ready to install them. To install:

$ make install

Once this completes, you will have a set of utilities for the AVR processor. The exe-
cutables are located in /usr/local/avr/bin. You’ll have to add that directory to your
search path in order to run them. The tools have an avr- prefix so the assembler is
avr-as, the linker is avr-ld, etc.

3BSD users should note that the project’s makefile uses GNU make syntax. This means FreeBSD
users need to make the tools with gmake. On the other hand, once things stabilize, I plan on adding
the AVR tools to the FreeBSD ports. So this chapter will be irrelevant to FreeBSD users...

8

2.2. AVR-GCC

2.1.4. An Alternative

The AVR-GCC compiler has support for using the AVA assembler/linker tools. If you
would prefer to use this tool, the compiler can be configured to use it instead. I haven’t
built or used this tool, so this section will remain “unfinished”.4

2.2. AVR-GCC

2.2.1. Downloading the Source

The gcc source archive, used in preparing this document, is version 2.95.2. You also need
to apply AVR-specific patches.5 The three files can be downloaded using the URLs in
Table 2.1. Create a directory in which to build the tools and put the downloaded files
in it. You are now ready to build the utilities.

2.2.2. Building the Project

The first step is to pull the source from the archive and apply the patches to the code.

$ tar zxf gcc-core-2.95.2.tar.gz
$ cd gcc-2.95.2
$ gunzip -dc ../gcc-core-2.95.2-avr-patch-1.1.gz | patch -p1

The next step is to configure and build the compiler. This is done by supplying arguments
to the configure script that enable the AVR-specific options and then making the
project.

$ configure --target=avr \
--prefix=/usr/local/avr \
--disable-nls \
--enable-languages=c

$ make

I specify the same installation directory as the binutils. Also, since there is little C++
support (in the case of standard libraries), I only build the C compiler.

4If someone wants to provide information on how to use this tool, I’d appreciate it.
5Again, the AVR patches have been committed to the GNU project, so future releases will have AVR

support built-in.

9

2. Installing the GNU Tools

2.2.3. Installing the Tools

If the compiler was built cleanly, you’re ready to install it. To install:

$ make install

2.3. AVR-LIB

2.3.1. Downloading the Source

The AVR standard library archive used in this document is version 20000514. Unfor-
tunately, it uses features of the preprocessor that are only available in later versions
versions of the tools, so a series of patches need to be applied6. The archive and patches
can be obtained using the URLs in Table 2.1. Download these two files and place them
in your working directory.

2.3.2. Building the Libraries

Before we can build the libraries, we need to unarchive them and apply patches.

$ tar zxf avr-libc-20000514.tar.gz
$ cd avr-libc-20000514
$ gunzip -dc ../avr-libc-20000514-diff.gz | patch -p1

Now simply build the project.

$ cd src
$ make prefix=/usr/local/avr

2.3.3. Installing the Libraries and Header Files

Once the libraries have been built, you need to install them with the rest of the tools.

$ make prefix=/usr/local/avr install

6As the project reaches a more stable release, I’ll update these instructions. For now, these are the
steps I take.

10

3. Using the GNU Tools

In this chapter, we create a simple example of using the GNU tools in an AVR project.
This project will use the PWM to ramp an LED on and off every two seconds. An
AT90S2313 processor will be used for the purposes of this example.

3.1. To-do

This is a list of things that need to be added to this chapter.

• Define a demo project.

– Show the source code.

– Describe the source.

– Show the schematic.

• Build a Makefile.

– Describe the Makefile.

• Build the project.

– Show examples of generated files.

• Show how to download to programmer.

11

3. Using the GNU Tools

12

4. Application Start-up

The standard library includes a start-up module that prepares the environment for
running applications written in C. Several versions of the start-up script are available
because each processor has different set-up requirements. The compiler, avr-gcc, selects
the appropriate module based upon the processor specified by command line options (see
Appendix A).

For the AVR processors, the start-up module is responsible for the following tasks:

• Providing a default vector table.

• Providing default interrupt handlers.

• Initializing the globally-reserved registers.

• Initializing the watchdog.

• Initializing the mcucr register.

• Initializing the data segment.

• Zeroing out the .bss segment.

• Jumping to main(). (A jump is used, rather than a call, to save space on the
stack. main() is not expected to return.)

The start-up module contains a default interrupt vector table. The contents of the table
are filled with predefined function names which can be overridden by the programmer.
This is discussed completely in Chapter 6. The first entry in the table, however, is the
reset vector. The reset vector is set to jump to location init . init is defined to be a
“weak” symbol, which means that if the application doesn’t define it, the linker will use
the value from the library (or module). The start-up module defines init to be the
same location as real init . If you want to add some custom code that gets executed
right out of a reset, name your routine init . Just make sure you jump to real init
at the end of your custom code. An example of how to do this is shown in Algorithm 1.

Once execution begins at real init , the system sets up the watchdog and the mcucr
registers. The module uses a linker trick to allow you to modify the value without

13

4. Application Start-up

Algorithm 1 An example of adding boot-code.
void real init (void);
void init (void) attribute ((naked));

void init (void)
{

/* This must be the last line of the function. */

asm ("rjmp real init ");
}

recompiling. The module takes the address of the variables init wdctr and init -
mcucr , rather than the contents. By using the --defsym option to the linker, you set
the address of the symbols, which are used as the load values for the registers. These
two variables are defined as “weak” symbols, so the module will provide default values
if you don’t override them.

Next, global variables that have initial values are loaded from program memory. The
compiler creates two identically laid out sections. One will be placed in static RAM and
is used during program execution. The other is placed in program ROM and contains
the initial values. The start-up code copies the ROM image into the static RAM so that
main() (and everything called from main()) see a properly initialized data segment.

The uninitialized data section, .bss, is then zeroed out. This section contains all non-
auto variables that weren’t given an initial value.

Lastly, the module jumps to main() and the application starts running. The function
main() is recognized by the compiler as being special, and so some prolog and epilog
code is placed in this function. When entering the function, the stack is initialized to
point to the end of static RAM.1 The end of the function always contains an infinite
loop, so if you try to exit main(), your application will hang.

It should be noted that the start-up modules add quite a bit of bulk to an application.
If you are using a smaller part, the bloat caused by the start-up module may be unac-
ceptible. In those cases, your application would be better served by writing it entirely
in assembly language. As an example, Figure 4.1 contains the hex file, generated by an
empty main(), targetted for the AT90S2313 processor. The processor has only 1Kwords
of ROM space and the start-up code eats up nearly 5% of it!

1I don’t really like this approach because it doesn’t provide much error checking. I would prefer to see
something like:

static char stack[20] attribute ((stack));

which would add 20 bytes to a stack section. This section would get combined with the data and bss
sections. If the total size exceeded the static RAM, you’d know during the linking phase that you’ve
run out of stack space. Maybe this could get incorporated in a newer version of the tools.

14

:150000000FC027C026C025C024C023C022C021C020C01FC01E03
:15001500C0CFEDD0E0CDBFDEBFFFCF11241FBE20E0A89521BD86
:15002A0020E025BFE4E5F0E0A0E6B0E003C0C89531960D92A008
:15003F0036D9F7A0E6B0E001C01D92A036E9F7E3CF1895FECF3E
:00000001FF

Figure 4.1.: Hex file for empty main().

15

4. Application Start-up

16

5. Memory APIs

The AVR family of processors do not use a single address space to map data and code.
Since the registers are 8 bits wide, and the registers are used to write to RAM, the static
RAM was made 8 bits wide. The program memory, on the other hand, is 16 bits wide.
This allows the instructions to represent more operations in a single memory access. In
addition, the EEPROM resides in yet another bank of memory.

AVR-GCC places code in the flash ROM and places data in the SRAM, which would
be expected. If your program needs to access the EEPROM or place data in the ROM,
however, things are a little less intuitive. This chapter shows what support has been
provide for these situations.

5.1. Program Memory

Placing data in ROM is very useful to embedded applications: the data is always avail-
able and doesn’t have to be generated at startup. Even more importantly, the data
cannot get corrupted by an errant application, which reduces the number of considera-
tions when debugging.

Since the ROM resides in a different address space, we need a way to tell the compiler
to place variables there. We also need a way to access the data (i.e. the compiler has to
use the lpm instruction.)

The first detail is provided by the attribute keyword. By tagging a variable with
attribute ((progmem)), you can force it to reside in the ROM. Variables with this

attribute cannot be accessed like variables not using the attribute. You need to use the
macros described in this section to access the data in ROM. There are a number of data
types already defined for the primitive types.1 These are shown in Table 5.1.

The second step, accessing the data, is done using the macros in this section. These
macros are found in pgmspace.h.

1I believe that a variable defined with progmem ought to have the const qualifier automatically added.
The compiler currently doesn’t do this. Time to submit a bug report. . .

17

5. Memory APIs

Type Name Definition
prog void void attribute ((progmem))
prog char char attribute ((progmem))
prog int int attribute ((progmem))
prog long long attribute ((progmem))

prog long long long long attribute ((progmem))
PGM P prog char const*

PGM VOID P prog void const*

Table 5.1.: Primitive types in program memory

Function Reference

elpm inline

syntax

uint8 t elpm inline(uint32 t addr);

description

This macro gets converted into in-line assembly instructions to pull a byte from program
ROM. The elpm instruction is used, so this macro can only be used with AVR devices
that support it. The argument is the 32-bit address of the cell. The maximum address
depends upon the device being used.

lpm inline

syntax

uint8 t lpm inline(uint16 t addr);

description

This function gets converted into in-line assembly instructions to pull a byte from pro-
gram ROM. The argument is the 16-bit address of the cell. The maximum address
depends upon the device being used.

Only one byte is returned by this function. When pulling wider values from the program
memory, the memcpy P() and strcpy P() functions should be used.

see also

memcpy P(), strcpy P()

18

5.1. Program Memory

memcpy P

syntax

void* memcpy P(void* dst, PGM VOID P src, size t n);

description

This is a special version of the memcpy function that copies data from program memory
to RAM.

PRG RDB

syntax

uint8 t PRG RDB(uint16 t addr);

description

This macro simply invokes the lpm inline() function.

PSTR

syntax

PSTR(s);

description

This macro takes a literal string as an argument. It places the string into the program
address space and returns its address. The string can be accessed using the macros and
functions in this section.

strcmp P

syntax

int strcmp P(char const*, PGM P);

description

This function operates similarly to the strcmp() function. It’s second argument, how-
ever, refers to a string in program memory. Make sure you don’t get the arguments
reversed.

19

5. Memory APIs

strcpy P

syntax

char* strcpy P(char*, PGM P);

description

This function operates similarly to the strcpy() function. It’s second argument, how-
ever, refers to a string in program memory.

strlen P

syntax

size t strlen P(PGM P);

description

This function operates similarly to the strlen() function. It’s argument, however, refers
to a string in program memory.

strncmp P

syntax

int strncmp P(char const*, PGM P, size t);

description

This function operates similarly to the strncmp() function. It’s second argument, how-
ever, refers to a string in program memory. Make sure you don’t get the arguments
reversed.

strncpy P

syntax

char* strncpy P(char*, PGM P, size t);

description

This function operates similarly to the strncpy() function. It’s second argument, how-
ever, refers to a string in program memory.

20

5.2. EEPROM

5.2. EEPROM

All AVR processors contain a bank of nonvolatile memory. Unfortunately, this memory
doesn’t reside in the same address space as the static RAM; the architecture requires
that the EEPROM cells be accessed through I/O registers. The EEPROM API provides
a high-level interface to the hardware, which makes using the nonvolatile memory much
easier. To gain access to these functions, include the file eeprom.h.

The routines take an argument representing the address of the cell. Rather than using
hard-coded numbers or defined symbols, it would be nice to use actual variables. AVR-
GCC allows this by using the attribute keyword. Algorithm 2 shows a function
that returns a checksum value from the EEPROM. The example allocates space in the
.eeprom section to hold the variable, but doesn’t specify the actual address. By taking
this approach, the linker will properly fix-up the address references.

Algorithm 2 Proper use of EEPROM variables

static uint8 t checksum attribute ((section (‘‘.eeprom’’))) = 0;

uint8 t getChecksum(void)
{

return eeprom rb(&checksum);
}

The amount of nonvolatile memory varies from device to device. The linker “knows”
the limits of the sections, so by letting the compiler and linker reserve the space for
variables, you can get diagnostic messages if you exceed the size of the bank. This can
also come in handy if you need to switch device types in a project.

Function Reference

eeprom is ready

syntax

int eeprom is ready(void);

description

This function indicates when the eeprom is able to be accessed. When an EEPROM
location is written to, the entire EEPROM become unavailable for up to 4 milliseconds.
Unlike some other microcontrollers, the AVR processors use hardware timers to program

21

5. Memory APIs

EEPROM cells. A status bit is provided to give an application the state of the EEPROM.
This function allows an application to poll the status to find out when the memory is
accessible.

eeprom rb

syntax

uint8 t eeprom rb(uint16 t addr);

description

Reads a single byte from the EEPROM. The parameter addr specifies the location to
read. The maximum address that can be specified depends upon the device. A macro
has been defined to provide compatibility with the IAR compiler. Calling EEGET(addr)
will actually call this function.

eeprom read block

syntax

void eeprom read block(void* buf, uint16 t addr, size t n);

description

Reads a block of EEPROM memory. The starting address of the EEPROM block is
specified in the addr parameter. The maximum address depends upon the device. The
number of bytes to transfer is indicated by the n parameter. The data is transferred to
an SRAM buffer, the starting address of which is passed in the buf argument.

eeprom rw

syntax

uint16 t eeprom rw(uint16 t addr);

description

Reads a 16-bit value from the EEPROM. The data is assumed to be in little endian
format. The parameter addr specifies the location to read. The maximum address that
can be specified depends upon the device.

22

5.2. EEPROM

eeprom wb

syntax

void eeprom wb(uint16 t addr, uint8 t val);

description

Writes a value, val, to the EEPROM. The value is written to address addr. To be
compatible with the IAR compiler, a macro has been defined. EEPUT(addr, val) will
expand to a call to eeprom wb().

23

5. Memory APIs

24

6. Interrupt API

It’s nearly impossible to find compilers that agree on how to handle interrupt code. Since
the C language tries to stay away from machine dependent details, each compiler writer
is forced to design their method of support.

In the AVR-GCC environment, the vector table is predefined to point to interrupt rou-
tines with predetermined names. By using the appropriate name, your routine will be
called when the corresponding interrupt occurs. The device library provides a set of
default interrupt routines, which will get used if you don’t define your own.

Patching into the vector table is only one part of the problem. The compiler uses, by
convention, a set of registers when it’s normally executing compiler-generated code. It’s
important that these registers, as well as the status register, get saved and restored.
The extra code needed to do this is enabled by tagging the interrupt function with
attribute ((interrupt)).

These details seem to make interrupt routines a little messy, but all these details are
handled by the Interrupt API. An interrupt routine is defined with one of two macros,
INTERRUPT() and SIGNAL(). The interrupt is chosen by supplying one of the symbols
in Table 6.1. These macros register and mark the routine as an interrupt handler for
the specified peripheral. See the entries for INTERRUPT() and SIGNAL() for examples of
their use.

Unused interrupt vectors point to a routine called unexpected . The default version of
this function simply consists of a reti instruction. You can define your own handler, if
you want to handle unexpected interrupts differently.

The functions and macros are defined in interrupt.h and the signal symbols are defined
in sig-avr.h.

Function Reference

cli

syntax

void cli(void);

25

6. Interrupt API

Name Description
SIG INTERRUPT0 External Interrupt0
SIG INTERRUPT1 External Interrupt1
SIG INTERRUPT2 External Interrupt2
SIG INTERRUPT3 External Interrupt3
SIG INTERRUPT4 External Interrupt4
SIG INTERRUPT5 External Interrupt5
SIG INTERRUPT6 External Interrupt6
SIG INTERRUPT7 External Interrupt7

SIG OUTPUT COMPARE2 Output Compare2 Interrupt
SIG OVERFLOW2 Overflow2 Interrupt

SIG INPUT CAPTURE1 Input Capture1 Interrupt
SIG OUTPUT COMPARE1A Output Compare1(A) Interrupt
SIG OUTPUT COMPARE1B Output Compare1(B) Interrupt

SIG OVERFLOW1 Overflow1 Interrupt
SIG OUTPUT COMPARE0 Output Compare0 Interrupt

SIG OVERFLOW0 Overflow0 Interrupt
SIG SPI SPI Interrupt

SIG UART RECV UART(0) Receive Complete Interrupt
SIG UART1 RECV UART(1) Receive Complete Interrupt
SIG UART DATA UART(0) Data Register Empty Interrupt
SIG UART1 DATA UART(1) Data Register Empty Interrupt
SIG UART TRANS UART(0) Transmit Complete Interrupt
SIG UART1 TRANS UART(1) Transmit Complete Interrupt

SIG ADC ADC Conversion complete
SIG EEPROM Eeprom ready

SIG COMPARATOR Analog Comparator Interrupt

Table 6.1.: Signal names.

26

description

Disables all interrupts by clearing the global interrupt mask. This function actually
compiles into a single line of assembly, so there is no function call overhead.

enable external int

syntax

void enable external int(uint8 t ints);

description

This function gives access to the gimsk register (or eimsk register if using an AVR Mega
device). Although this function is essentially the same as using the outp() macro, it
does adapt slightly to the type of device being used.

INTERRUPT

syntax

INTERRUPT(signame)

description

This macro creates the prototype and opening of a function that is to be used as an
interrupt (note that there is no semicolon!) The argument signame should be one of the
symbols found in Table 6.1. The routine will be executed with interrupts enabled. If
you want interrupts disabled, use the SIGNAL() macro instead. Algorithm 3 sets up an
empty routine which gets called when the ADC has completed a conversion.

Algorithm 3 Setting up an interrupt handler
INTERRUPT(SIG ADC)
{
}

see also

SIGNAL()

27

6. Interrupt API

sei

syntax

void sei(void);

description

Enables interrupts by setting the global interrupt mask. This function actually compiles
into a single line of assembly, so there is no function call overhead.

SIGNAL

syntax

SIGNAL(signame)

description

This macro creates the prototype and opening of a function that is to be used as an
interrupt (note that there is no semicolon!). The argument signame should be one of
the symbols found in Table 6.1. The routine will be executed with interrupts disabled.
If you want interrupts enabled, use the INTERRUPT() macro instead. Algorithm 4 sets
up an empty routine which gets called when the ADC has completed a conversion.

Algorithm 4 Setting up a signal handler
SIGNAL(SIG ADC)
{
}

see also

INTERRUPT()

timer enable int

syntax

void timer enable int(uint8 t ints);

description

This function modifies the timsk register.

28

7. I/O APIs

7.1. I/O Port APIs

This section describes the functions and macros that make it easier to access the I/O
registers. Most of these routines actually get replaced with in-line assembly, so there is
little to no performance penalty to use them. These routines are defined in io.h. This
header file also defines the registers and bit definitions for the correct AVR device.

Function Reference

BV

syntax

BV(pos)

description

This macro converts a bit definition into a bit mask. It is intended to be used with the
bit definitions in the io.h header file. For instance, to build a mask of both the wdtoe
and wde watchdog bits, you would use “BV(WDTOE) | BV(WDE)”.

bit is clear

syntax

uint8 t bit is clear(uint8 t port, uint8 t bit);

description

Returns 1 if the specified bit in port is clear. bit can be 0 to 7. This function uses the
sbic instruction to test the bit, so port needs to be a valid address for that instruction.

29

7. I/O APIs

bit is set

syntax

uint8 t bit is set(uint8 t port, uint8 t bit);

description

Returns 1 if the specified bit in port is set. bit can be 0 to 7. This function uses the
sbis instruction to test the bit, so port needs to be a valid address for that instruction.

cbi

syntax

void cbi(uint8 t port, uint8 t bit);

description

Clears the specified bit in port. bit is a value from 0 to 7 and should be specified as one
of the defined symbols. If port specifies an actual I/O register, this macro reduces to
a single in-line assembly instruction. If it isn’t an I/O register, it attempts to generate
the most efficient code to complete the operation.

see also

sbi()

inp

syntax

uint8 t inp(uint8 t port);

description

Reads the 8-bit value from port. If port is a constant value, this macro assumes the value
refers to a valid address and tries to use the in instruction. A variable argument results
in an access using direct addressing.

30

7.1. I/O Port APIs

inw

syntax

uint16 t inw(uint8 t port);

description

Reads a 16-bit value from I/O registers. This routine was created for accessing the 16-bit
registers (adc, icr1, ocr1, tcnt1) because they need to be read in the proper order.
This macro should only be used if interrupts are disabled since it only generates the two
lines of assembly that reads the register.

inw atomic

syntax

uint16 t inw atomic(uint8 t port);

description

Atomically reads a 16-bit value from I/O registers. The generated code disables inter-
rupts during the access and properly restores the interrupt state when through. This
routine was created for accessing the 16-bit registers (adc, icr1, ocr1, tcnt1) because
they need to be read in the proper order. This macro can safely be used in interrupt
and non-interrupt routines because it preserves the interrupt enable flag (although you
may not want to pay for the extra lines of assembly in an interrupt routine.)

loop until bit is clear

syntax

void loop until bit is clear(uint8 t port, uint8 t bit);

description

This macro generates a very tight polling loop that waits for a bit to become cleared. It
uses the sbic instruction to perform the test, so the value of port is restricted to valid
port addresses for that instruction. bit is a value from 0 to 7.

31

7. I/O APIs

loop until bit is set

syntax

void loop until bit is set(uint8 t port, uint8 t bit);

description

This macro generates a very tight polling loop that waits for a bit to become set. It uses
the sbis instruction to perform the test, so the value of port is restricted to valid port
addresses for that instruction. bit is a value from 0 to 7.

outp

syntax

void outp(uint8 t val, uint8 t port);

description

Writes the 8-bit value val to port. If port is a constant value, this macro assumes the
value refers to a valid address and tries to use the out instruction. A variable argument
results in an access using direct addressing.

outw

syntax

void outw(uint16 t val, uint8 t port);

description

Writes to a 16-bit I/O register. This routine was created for manipulating the 16-bit
registers (adc, icr1, ocr1, tcnt1) because they need to be written in the proper order.
This macro should only be used if interrupts are disabled since it only generates the two
lines of assembly that modify the register.

outw atomic

syntax

void outw atomic(uint16 t val, uint8 t port);

32

7.2. Watchdog API

description

Atomically writes to a 16-bit I/O register. The generated code disables interrupts during
the access and properly restores the interrupt state when through. This routine was
created for accessing the 16-bit registers (adc, icr1, ocr1, tcnt1) because they need
to be written in the proper order. This macro can safely be used in interrupt and non-
interrupt routines because it preserves the interrupt enable flag (although you may not
want to pay for the extra lines of assembly in an interrupt routine.)

sbi

syntax

void sbi(uint8 t port, uint8 t bit);

description

Sets the specified bit in port. bit is a value from 0 to 7 and should be specified as one
of the defined symbols. If port specifies an actual I/O register, this macro reduces to
a single in-line assembly instruction. If it isn’t an I/O register, it attempts to generate
the most efficient code to complete the operation.

see also

cbi()

7.2. Watchdog API

The functions in this section manipulate the watchdog hardware. These macros are
defined in wdt.h.

The startup code is able to initialize the watchdog hardware. By default, the control
register, wdctr, is zeroed out. If you want it to be set to another value, you need to
specify it on the linker command line. The symbol used is init wdtcr . For instance,
to set wdctr to 0x1f, you would have a command line like this:

avr-ld --defsym init wdctr =0x1f ...

Function Reference

wdt disable

syntax

void wdt disable(void);

33

7. I/O APIs

timeout Period
0 16K cycles
1 32K cycles
2 64K cycles
3 128K cycles
4 256K cycles
5 512K cycles
6 1024K cycles
7 2048K cycles

Table 7.1.: Watchdog timeout values.

description

This macro shuts down the watchdog hardware.

wdt enable

syntax

void wdt enable(uint8 t timeout);

description

This turns on the watchdog system. The parameter timeout indicates the expiration
time of the watchdog. The valid settings for timeout are found in Table 7.1.

wdt reset

syntax

void wdt reset(void);

description

This macro generates in-line code to reset the watchdog timer.

34

A. AVR-GCC Configuration

This appendix describes the AVR-specific changes to the GNU toolset. See the GNU
documentation for options that are common to all processor targets.

A.1. Assembler Options

These added command line options are specific to the AVR processors.

Option Description
-mmcu=name Tells avr-as which AVR processor is the target.

name can be at90s1200, at90s2313, at90s2323,
at90s2333, attiny22, at90s2343, at90s4433,
at90s4414, at90s4434, at90s8515, at90s8535,
atmega603, atmega103, or atmega161.

A.2. Compiler Options

These added command line options are specific to the AVR processors.

Option Description
-mava Tells avr-gcc to use ava as the assembler and

linker.
-mcall-prologues Use subroutines for function pro-

logue/epilogue.
-minclude-target Add line “#include "target.inc"” to asm

listing.
-minit-stack= Sets initial stack address.

-mint8 Assume int to be an eight bit integer.
-mmcu= Specify the device (at90s23xx, attiny22,

at90s44xx, at90s85xx, atmega603,
atmega103). The default is at90s85xx.

-mno-interrupts Don’t output interrupt compatible code.
-msize Outputs instruction sizes to the asm listing.

35

A. AVR-GCC Configuration

A.3. Compiler-defined Symbols

The compiler defines symbols that the source code can use to adjust its compilation.

Symbol Description
AVR, AVR, AVR Can be used to indicate source is being com-

piled for AVR processors
AVR ATtiny22, Defined when using -mmcu=attiny22.
AVR AT90S8515 Defined when using -mmcu=at90s85xx.
AVR ATmega603 Defined when using -mmcu=at90mega603.
AVR ATmega103 Defined when using -mmcu=at90mega103.

A.4. Register Usage

36

Index

attribute
interrupt, 25
progmem, 17
section(

.eeprom

), 21

bit is clear(), 29
bit is set(), 30
BV(), 29

cbi(), 30
cli(), 25
compatibility

IAR, 22, 23

eeprom is ready(), 21
eeprom rb(), 22
eeprom read block(), 22
eeprom rw(), 22
eeprom wb(), 23

elpm inline(), 18
enable external int(), 27

IAR compiler, 22, 23
inp(), 31
inp atomic(), 31

inp(), 30
INTERRUPT(), 25, 27
Interrupts

predefined names, 25

loop until bit is clear(), 31
loop until bit is set(), 32

lpm inline(), 18

memcpy P(), 19

outp(), 32

outw(), 32
outw atomic(), 32

PRG RDB(), 19
PSTR(), 19

sbi(), 33
sei(), 28
SIGNAL(), 25, 28
strcmp P(), 19
strcpy P(), 20
strlen P(), 20
strncmp P(), 20
strncpy P(), 20

timer enable int(), 28

wdt disable(), 33
wdt enable(), 34
wdt reset(), 34

37

